题目内容

7.已知:如图,△ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.

分析 过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,根据角平分线上的点到角的两边距离相等可得PD=PM,同理可得PM=PN,从而得到PD=PN,再根据到角的两边距离相等的点在角的平分线上证明即可.

解答 证明:如图,过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,
∵BE平分∠ABC,点P在BE上,
∴PD=PM,
同理,PM=PN,
∴PD=PN,
∴点P在∠A的平分线上.

点评 本题考查了角平分线上的点到角的两边距离相等的性质,到角的两边距离相等的点在角的平分线上,熟记性质并作出辅助线是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网