将长度为5cm的线段向上平移10cm所得线段长度是(   )

A. 10cm B. 5cm C. 0cm D. 无法确定

B 【解析】平移不改变图形的大小和形状.故线段长度不变,仍为5cm.

每一个多边形都可以按图的方法割成若干个三角形.而每一个三角形的三个内角的和是180°.按图的方法,十二边形的内角和是__________度.

1800 【解析】∵过四边形的一个顶点可画一条对角线,将四边形分成两个三角形, 过五边形的一个顶点可画两条对角线,将五边形分成三个三角形, 过六边形的一个顶点可画三条对角线,将六边形分成四个三角形, ∴过十二边形的一个顶点可画九条对角线,将十二边形分成十个三角形, 而三角形的内角和等于180°, ∴十二边形的内角和是180°×10=1800°. 故答案为:...

在锐角三角形中,最大角α的取值范围是 (  )

A. 0°<α<90° B. 60°<α<90° C. 60°<α<180° D. 60°≤α<90°

D 【解析】三角形三个内角的和等于180°,设其他两个角分别为β和γ,由题意α<90°,α?β且α?γ,α+β+γ=180°,所以3α?180°,即α?60°. 故选:D.

分解因式:4m3n-16mn3.

4mn(m+2n)(m-2n) 【解析】试题分析:提取公因式4mn后,再利用平方差公式因式分解即可. 试题解析: 4m3n-16mn3 =4mn(m2-4n2) =4mn(m+2n)(m-2n).

如图,抛物线y=﹣x2+3x+4与x轴交于点A,B,与y轴交于点C,P(m,n)为第一象限内抛物线上的一点,点D的坐标为(0,6).

(1)OB=_________,抛物线的顶点坐标为_________________;

(2)当n=4时,求点P关于直线BC的对称点P′的坐标;

(3)是否存在直线PD,使直线PD所对应的一次函数随x的增大而增大?若存在,直接写出m的取值范围;若不存在,请说明理由.

(1)4,(,);(2)(0,1);(3)1<m<2. 【解析】 试题分析:(1)当y=0时,即﹣x2+3x+4=0,解得:x1=4,x2=﹣1,∴点A(﹣1,0)点B(4,0),∴OB=4,y=﹣x2+3x+4=,∴抛物线的顶点坐标为(,),故答案为:4,(,). (2)如图,连接CP,CP′, n=4时,﹣m2+3m+4=4,解得:m1=3,m2=0(舍去),∴这时P点...

如图所示,在同一平面直角坐标系中,作出①y=﹣3x2,②y=﹣,③y=﹣x2的图象,则从里到外的三条抛物线对应的函数依次是______(填序号)

① ③ ② 【解析】①y=?3x²,②y=?x²,③y=?x²中,二次项系数a分别为?3、?、?1, ∵|?3|>|?1|>,∴抛物线②y=?x²的开口最宽,抛物线①y=?3x²的开口最窄。 故答案为:①③②。

已知二次函数的图象经过点(0,﹣3),且顶点坐标为(﹣1,﹣4).

(1)求该二次函数的解析式;

(2)设该二次函数的图象与x轴的交点为A、B,与y轴的交点为C,求△ABC的面积.

1.【解析】 (1)设,把点代入得:-----------2分 ∴函数解析式或-----------------------------2分 2.(2)∵,解得, ∴,,。---------(2分) ∴△ABC的面积=。--------------------------(2分) 【解析】试题分析:(1)先设所求函数解析式是y=a(x+1)2﹣4,再把(0,﹣3)代...

在△ABC中,AB=8 ㎝,AC=10 ㎝,P,G,H分别是AB,BC,CA的中点,则四边形APGH的周长是______ .

18cm 【解析】【解析】 ∵P、G、H分别是AB、BC、CA的中点,∴PG、HG为△ABC的中位线,∴AP=AB=×8=4cm,AH=AC=×10=5cm,∴PG∥AC,GH∥AB,∴四边形APGH为平行四边形,HG=AP=4cm,PG=AH=5cm,∴四边形APGH的周长是(4+5)×2=18cm. 故答案为:18cm.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网