题目内容

在△ABC中,AB=8 ㎝,AC=10 ㎝,P,G,H分别是AB,BC,CA的中点,则四边形APGH的周长是______ .

18cm 【解析】【解析】 ∵P、G、H分别是AB、BC、CA的中点,∴PG、HG为△ABC的中位线,∴AP=AB=×8=4cm,AH=AC=×10=5cm,∴PG∥AC,GH∥AB,∴四边形APGH为平行四边形,HG=AP=4cm,PG=AH=5cm,∴四边形APGH的周长是(4+5)×2=18cm. 故答案为:18cm.
练习册系列答案
相关题目

计算1052-952的结果为( )

A. 1000 B. 1980

C. 2000 D. 4000

C 【解析】1052-952=(105+95)(105-95)=200×10=2000,故选C.

在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线的解析式是( )

A. y=(x+2)2+2 B. y=(x-2)2-2 C. y=(x-2)2+2 D. y=(x+2)2-2

B 【解析】试题分析:根据二次函数图象左加右减,上加下减的平移规律,可知函数y=x2﹣4向右平移2个单位,得:y=(x﹣2)2﹣4;再向上平移2个单位,得:y=(x﹣2)2﹣2; 故选B.

地球正面临第六次生物大灭绝,据科学家预测,到2050年,目前的四分之一到一半的物种将会灭绝或濒临灭绝,2012年底,长江江豚数量仅剩约1000头,其数量年平均下降的百分率在13%﹣15%范围内,由此预测,2013年底剩下江豚的数量可能为( )头.

A.970 B.860 C.750 D.720

B 【解析】 试题分析:根据2012年底,长江江豚数量仅剩约1000头,其数量年平均下降的百分率在13%﹣15%范围内,得出2013年底剩下江豚的数量的取值范围。设2013年底剩下江豚的数量是x,则列出不等式组解得850﹤x﹤870,符合题意的只有860. 考点一元一次不等式组的应用:

如图所示,△ABC中AD⊥BC,E,F,G分别为BC,AB,AC的中点.求证四边形DEFG是等腰梯形.

答案见解析 【解析】试题分析:因为G,F分别是AB,AC的中点,所以GF∥DE,则四边形DEFG是梯形.在Rt△ABD中,G为AB的中点,则DG=AB.而E,F分别是BC,AC的中点,则EF=AB,所以DG=EF,所以四边形DEFG是等腰梯形. 试题解析:证明:∵G,F分别是AB,AC的中点,∴GF∥DE,易得EF不平行于DG,∴四边形DEFG是梯形.在Rt△ABD中,G为AB的中点,...

已知□ABCD中,∠B=70°,则∠A=______,∠C=______,∠D=______.

110° 110° 70° 【解析】【解析】 由平行四边形的性质得:∠A=180°-∠B=110°,∠C=∠A=70°,∠D=180°-∠B=110°. 故答案为:110°,110°,70°.

在□ABCD中,∠A、∠B的度数之比为5∶4,则∠C等于( )

A. 60° B. 80° C. 100° D. 120°

C 【解析】试题分析:解题的关键是熟练掌握平行四边形的邻角互补、对角相等.根据平行四边形的性质可得∠A、∠B互补,从而可求得∠A的度数,即可得到结果. ∵□ABCD, ∴∠A+∠B =180°, ∵∠A、∠B的度数之比为5∶4, ∴∠C =∠A=100°. 故选C.

四边形ABCD中,已知AB=CD,若再增加一个_________条件(只填写一个)可得四边形ABCD是平行四边形.

AB//CD等 【解析】【解析】 ∵在四边形ABCD中,AB=CD,∴可添加的条件是:AB∥CD,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形). 故答案为:AB//CD.

如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据: ≈1.41, ≈1.73)

2.9 【解析】试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网