今年,6月12日为端午节.在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息,解答小华和小明提出的问题.

(1)当定价为4元时,能实现每天800元的销售利润(2)当定价为4.8元时,每天的销售利润最大. 【解析】试题分析:(1)小华的问题要用一元二次方程来解决,解答的关键是弄清:设实现每天800元利润的定价为x元/个时,每一个粽子的利润为(x-2)元,一共能卖(500-×10)个粽子,根据题意列方程得:(x-2)(500-×10)=800,解得x1=4,x2=6,还应根据实际问题确定两个值是否都...

如图,在相距2米的两棵树间拴一根绳子做一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小芳距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.

0.5 【解析】试题分析:首先以点名所在的直线为x轴,最低点所在的直线为y轴建立平面直角坐标系,然后求出二次函数的解析式,最后计算出顶点坐标,顶点坐标的纵坐标就是距离地面的距离.

线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′的位置关系是__.

平行且相等 【解析】【解析】 ∵线段AB沿和它垂直的方向平移到A′B′,∴线段AB和线段A′B′的位置关系是平行且相等.故答案为:平行且相等.

如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于(  )

A. 55° B. 70° C. 125° D. 145°

C 【解析】试题分析:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°,∵点C、A、B1在同一条直线上, ∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°,∴旋转角等于125°. 故选C.

已知某种产品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查发现,该产品每降价1元,每星期可多卖出20件,由于供货方的原因销量不得超过380件,设这种产品每件降价x元(x为整数),每星期的销售利润为w元.

(1)求w与x之间的函数关系式,并写出自变量x的取值范围;

(2)该产品销售价定为每件多少元时,每星期的销售利润最大?最大利润是多少元?

(3)该产品销售价在什么范围时,每星期的销售利润不低于6000元,请直接写出结果.

(1)w=﹣20x2+100x+6000,x≤4,且x为整数;(2)售价不低于56元且不高于60元时,每星期利润不低于6000元. 【解析】试题分析:(1)根据利润=(售价﹣进价)×销售件数即可求得W与x之间的函数关系式; (2)利用配方法求得函数的最大值,从而可求得答案; (3)根据每星期的销售利润不低于6000元列不等式求解即可. 试题解析: (1)w=(20﹣x)(3...

抛物线y=x2﹣5x+6与x轴交于A、B两点,则AB的长为__.

1 【解析】试题分析:当y=0,则0=x2﹣5x+6, 解得:x1=2,x2=3, 故AB的长为:3﹣2=1.

如图,在等腰△ABC中,∠A=80°,∠B和∠C的平分线相交于点O

(1)连接OA,求∠OAC的度数;

(2)求:∠BOC。

(1) 40°;(2) 130° 【解析】试题分析:(1)连接AO,利用等腰三角形的对称性即可求得∠OAC的度数;(2)利用三角形的内角和定理以及角平分线的定义求∠BOC与∠A的关系,再把∠A代入即可求∠BOC的度数. 试题解析: (1)连接AO, ∵在等腰△ABC中,∠B和∠C的平分线相交于点O, ∴等腰△ABC关于线段AO所在的直线对称, ∵∠A=80°, ...

计算1052-952的结果为( )

A. 1000 B. 1980

C. 2000 D. 4000

C 【解析】1052-952=(105+95)(105-95)=200×10=2000,故选C.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网