题目内容

9.计算:
(1)($\sqrt{\frac{8}{27}}$-5$\sqrt{3}$)×$\sqrt{6}$         
(2)$\sqrt{8}$×$\sqrt{6}$÷$\sqrt{12}$+($\sqrt{2}$-$\sqrt{5}$).
(3)($\sqrt{6}$+2)2             
(4)$\sqrt{12}$÷$\sqrt{3}$-$\sqrt{3}$(1-$\sqrt{3}$)+(π-1)0
(5)$\frac{\sqrt{5}-\sqrt{20}}{\sqrt{125}}$;                 
(6)(7+$\sqrt{7}$)2-(7-$\sqrt{7}$)2

分析 (1)利用二次根式的乘法法则运算;
(2)利用二次根式的乘除法则运算;
(3)利用完全平方公式计算;
(4)利用二次根式的乘除法则运算;
(5)利用二次根式的除法法则运算;
(6)利用完全平方公式展开,然后合并即可.

解答 解:(1)原式=$\sqrt{\frac{8}{27}×6}$-5$\sqrt{3×6}$
=$\frac{4}{3}$-15$\sqrt{2}$;
(2)原式=$\sqrt{8×6÷12}$+$\sqrt{2}$-$\sqrt{5}$
=2+$\sqrt{2}$-$\sqrt{5}$;
(3)原式=6+4$\sqrt{6}$+4
=10+4$\sqrt{6}$;
(4)原式=2-$\sqrt{3}$+3+1
=6-$\sqrt{3}$;
(5)原式=$\frac{\sqrt{5}-2\sqrt{5}}{5\sqrt{5}}$
=-$\frac{1}{5}$;
(6)原式=49+14$\sqrt{7}$+7-(49-14$\sqrt{7}$+7)
=28$\sqrt{7}$.

点评 本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网