题目内容
17.解下列不等式,并把解集在数轴上表示出来:(1)2(x-1)+5<3x;
(2)$\frac{2-x}{4}$≥$\frac{1-x}{3}$.
分析 (1)先去括号,再移项、合并同类项,把x的系数化为1即可;
(2)先去分母,再去括号,再移项、再合并同类项1即可.
解答 解:(1)去括号得,2x-2+5<3x,
移项得,2x-3x<2-5,
合并同类项得,-x<-3,
把x的系数化为1得,x>3.
在数轴上表示为:
;
(2)去分母得,3(2-x)≥4(1-x)
去括号得,6-3x≥4-4x,
移项得,-3x+4x≥4-6,
合并同类项得,x≥-2.
在数轴上表示为:
.
点评 本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.
练习册系列答案
相关题目