题目内容

四边形ABCD中,AD//BC,AD=BC,则四边形ABCD是_______四边形.

平行 【解析】【解析】 ∵AD//BC,AD=BC,∴四边形ABCD是平行四边形.故答案为:平行.
练习册系列答案
相关题目

如图所示,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=5 ㎝, BD=12 ㎝,则该梯形的两底之和等于____㎝.

13 【解析】【解析】 过点D作DE∥AC交BC的延长线于E,则DE与AC平行且相等,AD=CE.∵AC⊥BD,∴BD⊥DE.在Rt△BDE中,BE==13,∴BC+AD=13.

如图,为公园的一块草坪,其四角上各有一棵树,现园林工人想使这个草坪的面积扩大一倍,又要四棵树不动,并使扩大后的草坪为平行四边形,试问这个想法能否实现,若能请你设计出草图,否则说明理由.

答案见解析 【解析】试题分析:过A、C,B、D分别作BD,AC的平行线,且这些平行线两两相交于E、F、G、H,从而EAOB、BOCF、OCGD、AODH都是平行四边形,利用平行四边形的对角线将平行四边形的面积分为相等的两块,可知ABCD的面积是EFGH面积的一半. 试题解析:【解析】 如图所示,过A、C,B、D分别作BD,AC的平行线,且这些平行线两两相交于E、F、G、H,则四边形E...

一个四边形的边长依次是a,b,c,d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是______,依据是________.

平行四边形 两组对边分别相等的四边形是平行四边形 【解析】【解析】 a2+b2+c2+d2=2ac+2bd,(a2﹣2ac+c2)+(b2﹣2bd+d2)=0,(a﹣c)2+(b﹣d)2=0,∴a﹣c=0,b﹣d=0,∴a=c,b=d,∴四边形是平行四边形(两组对边分别相等的四边形是平行四边形).故答案为:平行四边形,两组对边分别相等的四边形是平行四边形.

不能判断四边形ABCD是平行四边形的是( )

A. AB=CD,AD=BC B. AB=CD,AB∥CD

C. AB=CD,AD∥BC D. AB∥CD,AD∥BC

C 【解析】平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.∴C能判断, 平行四边形判定定理1,两组对角分别相等的四边形是平行四边形;∴B能判断; 平行四边形判定定理2,两组对边分别相等的四边形是平行四边形;∴D能判定; 平行四边形判定定理3,对角线互相平分的四边形是平行四边形; 平行四边形判定定理4,一组对边平行相等的四边形是平行四边形; 故选A. ...

为了更好地保护美丽如画的邛海湿地,西昌市污水处理厂决定先购买A,B两种型号的污水处理设备共20台,对邛海湿地周边污水进行处理.每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640 t,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1 080 t.

(1)求A,B两种型号的污水处理设备每周每台分别可以处理污水多少吨.

(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4 500 t,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少.

(1) A型污水处理设备每周每台可以处理污水240 t,B型污水处理设备每周每台可以处理污水200 t(2)购买A型污水处理设备13台,购买B型污水处理设备7台时,所需资金最少,最少是226万元 【解析】(1)根据1台A型污水处理设备+2台B型污水处理设备=每周可以处理污水640吨,2台A型污水处理设备+3台B型污水处理设备=每周可以处理污水1080吨,关系式列出二元一次方程组,从而解答即可...

下列各项中,不是不等式x≤2解的是( )

A. 0 B. 2 C. D.

D 【解析】由于>2,所以不是x≤2的解. 故选:D.

计算 的结果是____________.

【解析】 本题考查的是分式的加减 先通分,再把分子部分相加减,分母不变。 原式.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网