题目内容
如图,在△ABC中,AB=AC,过A点作AD∥BC,若∠BAD=110°,则∠BAC的大小为( )
![]()
![]()
A.30° B.40° C.50° D.70°
B【考点】等腰三角形的性质;平行线的性质.
【分析】根据平行线的性质求出∠C,根据等腰三角形的性质得出∠B=∠C=70°,根据三角形内角和定理求出即可.
【解答】解:∵AB=AC,
∴∠B=∠C,
∵AD∥BC,∠1=70°,
∴∠C=∠1=70°,
∴∠B=70°,
∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣70°=40°,
故选B.
【点评】本题考查了三角形内角和定理,等腰三角形的性质,平行线的性质的应用,解此题的关键是求出∠C的度数和得出∠B=∠C,注意:三角形内角和等于180°,两直线平行,内错角相等.
练习册系列答案
相关题目