题目内容

如图,正方形ABCD中,P在对角线BD上,E在CB的延长线上,且PE=PC,过点P作PF⊥AE于点F,若BE=1,AB=3,则PF的长为
 
考点:正方形的性质,全等三角形的判定与性质,勾股定理,等腰直角三角形
专题:
分析:连接AP.根据四边形ABCD是正方形的性质得出AB=BC,∠ABP=∠CBP=45°,证△ABP≌△CBP,推出PA=PC,∠3=∠4,求出∠3=∠5,得出△APE是等腰直角三角形,求出AE,即可求出PE.
解答:解:连接AP.
∵四边形ABCD是正方形,
∴AB=BC,∠ABP=∠CBP=45°,
在△ABP和△CBP中,
AB=BC
∠ABP=∠CBP
BP=BP

∴△ABP≌△CBP(SAS),
∴PA=PC,∠3=∠4,
∵PE=PC,
∴PA=PE,
∵PE=PC,
∴∠4=∠5,
∴∠3=∠5,
又∵∠ANP=∠ENB,
∴∠3+∠ANP=∠5+∠ENB=90°,
∴AP⊥PE,即△APE是等腰直角三角形,
∵BE=1,AB=3,
∴AE=
12+32
=
10

∴PE=
AE
2
=
10
2
=
5

∴PF=
2
2
PE=
10
2

故答案是:
10
2
点评:本题考查了正方形的性质和判定,勾股定理,等腰三角形性质,等腰直角三角形性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网