ÌâÄ¿ÄÚÈÝ
8£®¶¨Ò壺Èçͼ1£¬µãM£¬N°ÑÏß¶ÎAB·Ö¸î³ÉAM£¬MNºÍBN£¬ÈôÒÔAM£¬MN£¬BNΪ±ßµÄÈý½ÇÐÎÊÇÒ»¸öÖ±½ÇÈý½ÇÐΣ¬Ôò³ÆµãM£¬NÊÇÏß¶ÎABµÄ¹´¹É·Ö¸îµã£®Çë½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©ÒÑÖªµãM£¬NÊÇÏß¶ÎABµÄ¹´¹É·Ö¸îµã£¬ÇÒBN£¾MN£¾AM£®ÈôAM=2£¬MN=3£¬ÇóBNµÄ³¤£»
£¨2£©Èçͼ2£¬ÈôµãF¡¢M¡¢N¡¢G·Ö±ðÊÇAB¡¢AD¡¢AE¡¢AC±ßÉϵÄÖе㣬µãD£¬EÊÇÏß¶ÎBCµÄ¹´¹É·Ö¸îµã£¬ÇÒEC£¾DE£¾BD£¬ÇóÖ¤£ºµãM£¬NÊÇÏß¶ÎFGµÄ¹´¹É·Ö¸îµã£®
·ÖÎö £¨1£©ÓÉM¡¢NΪÏß¶ÎABµÄ¹´¹É·Ö¸îµã£¬ÀûÓÃÌâÖеÄж¨ÒåÁгö¹ØÏµÊ½£¬½«MNÓëAMµÄ³¤´úÈëÇó³öBNµÄ³¤¼´¿É£»
£¨2£©ÓÉF¡¢M¡¢N¡¢G·Ö±ðΪ¸÷±ßÖе㣬µÃµ½FM¡¢MN¡¢NG·Ö±ðΪÖÐλÏߣ¬ÀûÓÃÖÐλÏß¶¨ÀíµÃµ½BD=2FM£¬DE=2MN£¬EC=2NG£¬ÔÙÀûÓÃÌâÖÐж¨ÒåÁгö¹ØÏµÊ½£¬¼´¿ÉµÃÖ¤£®
½â´ð £¨1£©½â¡ßµãM£¬NÊÇÏß¶ÎABµÄ¹´¹É·Ö¸îµã£¬ÇÒBN£¾MN£¾AM£¬AM=2£¬MN=3£¬
¡àBN2=MN2+AM2=9+4=13£¬
¡àBN=$\sqrt{13}$£»
£¨2£©Ö¤Ã÷¡ßµãF¡¢M¡¢N¡¢G·Ö±ðÊÇAB¡¢AD¡¢AE¡¢AC±ßÉϵÄÖе㣬
¡àFM¡¢MN¡¢NG·Ö±ðÊÇ¡÷ABD¡¢¡÷ADE¡¢¡÷AECµÄÖÐλÏߣ¬
¡àBD=2FM£¬DE=2MN£¬EC=2NG£¬
¡ßµãD£¬EÊÇÏß¶ÎBCµÄ¹´¹É·Ö¸îµã£¬ÇÒEC£¾DE£¾BD£¬
¡àEC2=DE2+DB2£¬
¡à4NG2=4MN2+4FM2£¬
¡àNG2=MN2+FM2£¬
¡àµãM£¬NÊÇÏß¶ÎFGµÄ¹´¹É·Ö¸îµã£®
µãÆÀ ´ËÌ⿼²éÁ˹´¹É¶¨Àí£¬ÅªÇåÌâÖеÄж¨ÒåÊǽⱾÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
20£®ÏÂÁжþ´Î¸ùʽÖÐÊôÓÚ×î¼ò¶þ´Î¸ùʽµÄÊÇ£¨¡¡¡¡£©
| A£® | $\sqrt{24}$ | B£® | $\sqrt{36}$ | C£® | $\sqrt{11}$ | D£® | $\sqrt{20}$ |