题目内容
13.解方程组$\left\{\begin{array}{l}{4x-5y+2z=0}\\{3x+2y+7z=28}\\{x-y+2z=5}\end{array}\right.$.分析 先由③式变形,用含y、zd的代数式表示x,再分别代入①和②式,解得y和z的值,最后代入④式,求得x的值即可.
解答 解:$\left\{\begin{array}{l}{4x-5y+2z=0①}\\{3x+2y+7z=28②}\\{x-y+2z=5③}\end{array}\right.$
由③得,x=5+y-2z④
将④分别代入①和②,得
$\left\{\begin{array}{l}{4(5+y-2z)-5y+2z=0}\\{3(5+y-2z)+2y+7z=28}\end{array}\right.$
即$\left\{\begin{array}{l}{y+6z=20}\\{5y+z=13}\end{array}\right.$
解得$\left\{\begin{array}{l}{y=2}\\{z=3}\end{array}\right.$
将$\left\{\begin{array}{l}{y=2}\\{z=3}\end{array}\right.$代入④,得
x=5+2-6
解得x=1
∴原方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=2}\\{z=3}\end{array}\right.$
点评 本题主要考查了解三元一次方程组,解三元一次方程组的基本原则是利用代入法或加减法,消去一个未知数,得到二元一次方程组,然后解这个二元一次方程组,求出两个未知数的值,再求出第三个未知数的值.
练习册系列答案
相关题目
1.二元一次方程组$\left\{\begin{array}{l}{x+y=4}\\{x-y=2}\end{array}\right.$的解是( )
| A. | $\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$ |
2.已知二元一次方程2x-7y=5,用含x的代数式表示y,正确的是( )
| A. | $y=\frac{2x+5}{7}$ | B. | $y=\frac{2x-5}{7}$ | C. | $x=\frac{5+7y}{2}$ | D. | $x=\frac{5-7y}{2}$ |