题目内容

3.方程组$\left\{\begin{array}{l}{|x|+y=10}\\{x+|y|=4}\end{array}\right.$的解有(  )
A.1组B.2组C.3组D.4组

分析 由于x、y的符号不确定,因此本题要分情况讨论.

解答 解:当x≥0,y≤0时,原方程组可化为:$\left\{\begin{array}{l}{x+y=10}\\{x-y=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=7}\\{y=3}\end{array}\right.$;由于y≤0,所以此种情况不成立.
当x≤0,y≥0时,原方程组可化为:$\left\{\begin{array}{l}{-x+y=10}\\{x+y=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-3}\\{y=7}\end{array}\right.$.
当x≥0,y≥0时,$\left\{\begin{array}{l}{x+y=10}\\{x+y=4}\end{array}\right.$,无解;
当x≤0,y≤0时,$\left\{\begin{array}{l}{-x+y=10}\\{x-y=4}\end{array}\right.$,无解;
因此原方程组的解为:$\left\{\begin{array}{l}{x=-3}\\{y=7}\end{array}\right.$.
故选:A.

点评 本题考查了解方程组,在解含有绝对值的二元一次方程组时,要分类讨论,不可漏解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网