题目内容
18.(1)求证:∠HEA=∠CGF;
(2)当AH=DG时,求证:菱形EFGH为正方形.
分析 (1)连接GE,根据正方形的性质和平行线的性质得到∠AEG=∠CGE,根据菱形的性质和平行线的性质得到∠HEG=∠FGE,解答即可;
(2)证明Rt△HAE≌Rt△GDH,得到∠AHE=∠DGH,证明∠GHE=90°,根据正方形的判定定理证明.
解答
证明:(1)连接GE,
∵AB∥CD,
∴∠AEG=∠CGE,
∵GF∥HE,
∴∠HEG=∠FGE,
∴∠HEA=∠CGF;
(2)∵四边形ABCD是正方形,
∴∠D=∠A=90°,
∵四边形EFGH是菱形,
∴HG=HE,
在Rt△HAE和Rt△GDH中,
$\left\{\begin{array}{l}{AH=DG}\\{HE=HG}\end{array}\right.$,
∴Rt△HAE≌Rt△GDH(HL),
∴∠AHE=∠DGH,又∠DHG+∠DGH=90°,
∴∠DHG+∠AHE=90°,
∴∠GHE=90°,
∴菱形EFGH为正方形;
点评 本题考查的是正方形的性质、菱形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用相关的性质定理和判定定理是解题的关键.
练习册系列答案
相关题目
13.2016年某市仅教育费附加就投入7200万元,用于发展本市的教育,预计到2018年投入将达9800万元,若每年增长率都为x,根据题意列方程( )
| A. | 7200(1+x)=9800 | B. | 7200(1+x)2=9800 | ||
| C. | 7200(1+x)+7200(1+x)2=9800 | D. | 7200x2=9800 |
8.
某学校举行“中国梦,我的梦”演讲比赛,初、高中部根据初赛成绩,各选出 5名选手组成初中代表队的选手的决赛成绩如图所示:
(1)根据图示填写表格:
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)试分析哪一个代表队选手成绩较为稳定.
(1)根据图示填写表格:
| 平均数(分) | 中位数(分) | 众数(分) | |
| 初中代表队 | 85 | 85 | 85 |
| 高中代表队 | 85 | 80 | 80 |
(3)试分析哪一个代表队选手成绩较为稳定.