ÌâÄ¿ÄÚÈÝ
8£®Ä³²ÍÌüÖÐ1ÕŲÍ×À¿É×ø6ÈË£¬ÓÐÒÔÏÂÁ½ÖÖ°Ú·Å·½Ê½£º£¨1£©¶ÔÓÚµÚÒ»ÖÖ·½Ê½£¬4ÕÅ×À×ÓÆ´ÔÚÒ»Æð¿É×ø¶àÉÙÈË£¿nÕÅ×À×ÓÆ´ÔÚÒ»Æð¿É×ø¶àÉÙÈË£¿
£¨2£©¸Ã²ÍÌüÓÐ40ÕÅÕâÑùµÄ³¤·½ÐÎ×À×Ó£¬°´µÚ¶þÖÖ·½Ê½Ã¿4ÕÅÆ´³ÉÒ»ÕÅ´ó×À×Ó£¬Ôò40ÕÅ×À×Ó¿ÉÆ´³É10ÕÅ´ó×À×Ó£¬¹²¿É×ø¶àÉÙÈË£¿
£¨3£©Ò»ÌìÖÐÎ磬¸Ã²ÍÌüÀ´ÁË120λ¹Ë¿Í¹²Í¬¾Í²Í£¬µ«²ÍÌüÖÐÖ»ÓÐ28ÕÅÕâÑùµÄ³¤·½ÐÎ×À×Ó¿ÉÓã¬ÇÒÿ4ÕÅÆ´³ÉÒ»ÕÅ´ó×À×Ó£¬ÈôÄãÊÇÕâ¼Ò²ÍÌüµÄ¾Àí£¬Äã´òËãÑ¡ÔñÄÄÖÖ·½Ê½À´°Ú²Í×ÀÄØ£¿
·ÖÎö £¨1£©×Ðϸ¹Û²ìͼÐβ¢ÕÒµ½¹æÂÉÇó½â¼´£»
£¨2£©ÏÈÇóµÃÕÅ×À×Ó¿É×ø12ÈË£¬´Ó¶ø¿ÉÇóµÃ40ÕÅ×À×Ó¿ÉÎ§×øµÄÈËÊý£»
£¨3£©·Ö±ð¼ÆËã³öÁ½ÖÖ·½Ê½Î§×øµÄÈËÊý£¬È»ºó½øÐбȽϼ´¿É£®
½â´ð ½â£º£¨1£©Ò»ÕÅ×À×Ó¿É×ø6ÈË£¬Ã¿Ôö¼ÓÒ»ÕÅ×À×ÓÔö¼Ó4ÈË£¬4ÕÅ×À×Ó¿ÉÒÔ×ø18ÈË£¬ÓÐnÕÅ×À×Óʱ¿É×ø6+4£¨n-1£©=£¨4n+2£©ÈË£»
£¨2£©Ò»ÕÅ×À×Ó¿É×ø6ÈË£¬Ã¿Ôö¼ÓÒ»ÕÅ×À×ÓÔö¼Ó2ÈË£¬4ÕÅ×À×Ó¿ÉÒÔ×ø12ÈË£¬10¡Á12=120ÈË£»
£¨3£©µÚÒ»ÖÖ·½Ê½£º18¡Á7=126ÈË£¬µÚ¶þÖÖ·½Ê½°Ú·ÅÄÜ×ø12¡Á7=84ÈË£¬ËùÒÔӦѡÔñµÚÒ»ÖÖ·½Ê½°Ú·Å£®
µãÆÀ ±¾Ì⿼²éÁËͼÐεı仯ÀàÎÊÌ⣬¹Ø¼üÊÇͨ¹ý¹éÄÉÓë×ܽᣬµÃµ½ÆäÖеĹæÂÉ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
17£®²»¸Ä±ä·Öʽ$\frac{1-{x}^{2}y-x}{-5{x}^{3}-2y+3}$µÄÖµ£¬Ê¹·Ö×Ó¡¢·ÖĸµÄ×î¸ß´ÎÏîµÄϵÊý¶¼ÎªÕý£¬ÕýÈ·µÄ±äÐÎÊÇ£¨¡¡¡¡£©
| A£® | $\frac{1+{x}^{2}y-x}{5{x}^{3}-2y+3}$ | B£® | $\frac{{x}^{2}y-x-1}{5{x}^{3}-2y-3}$ | ||
| C£® | $\frac{{x}^{2}y+x-1}{5{x}^{3}+2y-3}$ | D£® | $\frac{{x}^{2}y+x+1}{5{x}^{3}+2y-3}$ |