题目内容

17.已知:如图△ABC中,BM、CN是∠ABC、∠ACB的平分线,且AM⊥BM于M,AN⊥CN于N,求证:MN∥BC.

分析 延长AN、AM分别交BC于点D、G,根据BM为∠ABC的角平分线,AM⊥BM得出∠BAM=∠G,故△ABG为等腰三角形,所以BM也为等腰三角形的中线,即AM=GM.同理AN=DN,根据三角形中位线定理即可得出结论.

解答 证明:延长AN、AM分别交BC于点D、G.如图所示:
∵BM为∠ABC的角平分线,
∴∠CBM=∠ABM,
∵BM⊥AG,
∴∠ABM+∠BAM=90°,∠G+∠CBM=90°,
∴∠BAM=∠G,
∴△ABG为等腰三角形,
∴BM也为等腰三角形的中线,即AM=GM.
同理AN=DN,
∴MN为△ADG的中位线,
∴MN∥BC.

点评 本题考查了等腰三角形的判定与性质、三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网