题目内容

15.在Rt△ABC中,DE⊥AB于D,AD=2,AB=8,BC=6,求AE的长.

分析 由勾股定理求出AC,证明△ADE∽△ABC,得出$\frac{AE}{AC}=\frac{AD}{AB}$=$\frac{1}{4}$,求出AE=$\frac{1}{4}$AC=$\frac{5}{2}$即可.

解答 解:∵在Rt△ABC中,DE⊥AB于D,AB=8,BC=6,
∴AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=10,DE∥BC,
∴△ADE∽△ABC,
∴$\frac{AE}{AC}=\frac{AD}{AB}$=$\frac{2}{8}$=$\frac{1}{4}$,
∴AE=$\frac{1}{4}$AC=$\frac{5}{2}$.

点评 本题考查了相似三角形的判定与性质、勾股定理;熟练掌握勾股定理,证明三角形相似是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网