题目内容

13.已知a,b,c是△ABC的三边,试说明:(a2+b2-c22-4a2b2的值一定是负数.

分析 原式利用平方差公式分解,再利用完全平方公式变形,继续利用平方差公式分解,利用两边之和大于第三边,两边之差小于第三边,即可确定出正负.

解答 解:(a2+b2-c22-4a2b2
=(a2+b2-c2+2ab)(a2+b2-c2-2ab)
=[(a+b)2-c2][(a-b)2-c2]
=(a+b+c)(a+b-c)(a-b-c)(a-b+c),
∵a,b,c是三角形ABC三边,
∴a+b+c>0,a+b-c>0,a-b-c<0,a-b+c>0,
∴(a+b+c)(a+b-c)(a-b-c)(a-b+c)<0,即值为负数.

点评 此题考查了因式分解的应用,以及三角形的三边关系,将已知式子进行适当的变形是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网