题目内容
6.(1)当点D是AB的中点时,四边形BECD是什么特殊四边形?说明你的理由
(2)在(1)的条件下,当∠A=45°时四边形BECD是正方形.
分析 (1)先证明AC∥DE,得出四边形BECD是平行四边形,再“根据直角三角形斜边上的中线等于斜边的一半”证出CD=BD,得出四边形BECD是菱形;
(2)先求出∠ABC=45°,再根据菱形的性质求出∠DBE=90°,即可证出结论.
解答 解:当点D是AB的中点时,四边形BECD是菱形;理由如下:
∵DE⊥BC,
∴∠DFB=90°,
∵∠ACB=90°,
∴∠ACB=∠DFB,
∴AC∥DE,
∵MN∥AB,即CE∥AD,
∴四边形ADEC是平行四边形,
∴CE=AD;
∵D为AB中点,
∴AD=BD,
∴BD=CE,
∵BD∥CE,
∴四边形BECD是平行四边形,
∵∠ACB=90°,D为AB中点,
∴CD=$\frac{1}{2}$AB=BD,
∴四边形BECD是菱形;
(2)当∠A=45°时,四边形BECD是正方形;理由如下:
∵∠ACB=90°,∠A=45°,
∴∠ABC=45°,
∵四边形BECD是菱形,
∴∠ABC=$\frac{1}{2}$∠DBE,
∴∠DBE=90°,
∴四边形BECD是正方形.
故答案为:45°.
点评 本题考查了平行四边形的判定、正方形的判定以及直角三角形的性质;根据题意证明线段相等和直角是解决问题的关键.
练习册系列答案
相关题目
16.已知x=3是方程x2-2x+a=0的根,则a等于( )
| A. | 1 | B. | -1 | C. | 3 | D. | -3 |
14.下列计算正确的是( )
| A. | (-4)+(-6)=2 | B. | $\sqrt{4}$=±2 | C. | 6-9=-3 | D. | $\sqrt{9}-\sqrt{3}$=$\sqrt{9-3}$ |