题目内容
(1)求BC的长;
(2)这辆小汽车超速了吗?
考点:勾股定理的应用
专题:
分析:(1)在直角三角形ABC中,已知AB,AC根据勾股定理即可求出小汽车2秒内行驶的距离BC;
(2)根据小汽车在两秒内行驶的距离BC可以求出小汽车的平均速度,求得数值与70千米/时比较,即可计算小汽车是否超速.
(2)根据小汽车在两秒内行驶的距离BC可以求出小汽车的平均速度,求得数值与70千米/时比较,即可计算小汽车是否超速.
解答:解:(1)在直角△ABC中,已知AC=30米,AB=50米,
且AB为斜边,则BC=
=40米.
答:小汽车在2秒内行驶的距离BC为40米;
(2)小汽车在2秒内行驶了40米,所以平均速度为20米/秒,
20米/秒=72千米/时,
因为72>70,
所以这辆小汽车超速了.
答:这辆小汽车的平均速度大于70千米/时,故这辆小汽车超速了.
且AB为斜边,则BC=
| AB2-AC2 |
答:小汽车在2秒内行驶的距离BC为40米;
(2)小汽车在2秒内行驶了40米,所以平均速度为20米/秒,
20米/秒=72千米/时,
因为72>70,
所以这辆小汽车超速了.
答:这辆小汽车的平均速度大于70千米/时,故这辆小汽车超速了.
点评:本题考查了勾股定理在实际生活中的应用,难度适中.题中正确的运用勾股定理计算BC的长度是解题的关键.
练习册系列答案
相关题目
去括号合并同类项:1-(1-2a)-(3a-2)=( )
| A、-a+4 | B、a+2 |
| C、-5a-2 | D、-a+2 |