题目内容

17.如图,在正方形ABCD的外侧,作等边三角形DCE,若∠AED=15°,则∠EAC=(  )
A.15°B.28°C.30°D.45°

分析 由于四边形ABCD是正方形,△DCE是正三角形,由此可以得到AD=DE,接着利用正方形和正三角形的内角的性质即可求解.

解答 解:∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,∠DAC=45°
又∵△DCE是正三角形,
∴DE=AD,∠EDC=60°,
∴△ADE是等腰三角形,∠ADE=90°+60°=150°,
∴∠DAE=∠AED=15°,
∵∠DAC=45°,
∴∠EAC=∠DAC-∠DAE=45°-15°=30
故选C.

点评 此题主要考查了正方形和等边三角形的性质,同时也利用了三角形的内角和,解题首先利用正方形和等边三角形的性质证明等腰三角形,然后利用等腰三角形的性质即可解决问题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网