题目内容

19.如图,菱形ABCD的边长为4,∠ABC=120°.点E是AB边上的动点,点F是对角线AC上的动点,则EF+BF的最小值为2$\sqrt{3}$.

分析 过点D作DE⊥AB于E,交AC于点F,连接BF,则DE的长即为EF+BF的最小值,根据菱形ABCD中∠ABC=120°求得∠BAD的度数,进而判断出△ADE是含30°角的直角三角形,根据勾股定理即可得出DE的长.

解答 解:过点D作DE⊥AB于E,交AC于点F,连接BF,则BF=DF,
∴EF+BF=EF+DF=DE(最短),
∵∠ABC=120°,
∴∠DAE=60°,
∴∠ADE=30°,
∵菱形ABCD的边长为4,
∴AE=$\frac{1}{2}$AD=2,
∴Rt△ADE中,DE=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$.
故答案为:2$\sqrt{3}$

点评 本题以最短距离问题为背景,主要考查了菱形的性质以及轴对称的性质.最短距离问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网