ÌâÄ¿ÄÚÈÝ
17£®£¨1£©µ±Ô˶¯¶àÉÙÃëºó£¬Èý½ÇÐÎPCQµÄÃæ»ý´ïµ½$\frac{3}{2}$cm2£¿
£¨2£©ÉèÔ˶¯¹ý³ÌÖÐÈý½ÇÐÎAPQµÄÃæ»ýΪy£¬ÊÔд³öÃæ»ýy£¨cm2£©ÓëÔ˶¯Ê±¼ät£¨s£©Ö®¼äµÄº¯Êý¹ØÏµÊ½£¬²¢Ð´³ötµÄȡֵ·¶Î§£®
£¨3£©µ±tΪºÎֵʱ£¬Èý½ÇÐÎAPQµÄÃæ»ý×îС£¬ÇÒ×îÐ¡Ãæ»ýÊǶàÉÙcm2£¿
·ÖÎö £¨1£©ÉèÔ˶¯xÃëºó£¬Èý½ÇÐÎPCQµÄÃæ»ý´ïµ½$\frac{3}{2}$cm2£¬¸ù¾ÝÌâÒâ±íʾ³öBP¡¢CQ£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½Áгö·½³Ì£¬½â·½³Ì¼´¿É£»
£¨2£©¸ù¾Ýy=SËıßÐÎABCD-S¡÷ABP-S¡÷PCQ-S¡÷ADQ¼ÆËã¾Í¼´¿É£»
£¨3£©¸ù¾ÝÅä·½·¨°ÑÒ»°ãʽ»¯Îª¶¥µãʽ£¬¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖʽâ´ð£®
½â´ð ½â£º£¨1£©ÉèÔ˶¯xÃëºó£¬Èý½ÇÐÎPCQµÄÃæ»ý´ïµ½$\frac{3}{2}$cm2£¬
ÓÉÌâÒâµÃ£¬BP=4x£¬CQ=x£¬
ÔòCP=8-4x£¬
Ôò$\frac{1}{2}$¡Á£¨8-4x£©¡Áx=$\frac{3}{2}$£¬
ÕûÀíµÃ£¬4x2-8x+3=0£¬
½âµÃ£¬x1=$\frac{3}{2}$£¬x2=$\frac{1}{2}$£¬
´ð£ºÔ˶¯$\frac{3}{2}$»ò$\frac{1}{2}$Ãëºó£¬Èý½ÇÐÎPCQµÄÃæ»ý´ïµ½$\frac{3}{2}$cm2£»
£¨2£©y=SËıßÐÎABCD-S¡÷ABP-S¡÷PCQ-S¡÷ADQ
=48-$\frac{1}{2}$¡Á4t¡Á6-$\frac{1}{2}¡Á$£¨8-4t£©¡Át-$\frac{1}{2}¡Á$8¡Á£¨6-t£©
=2t2-12t+24£¨0£¼t¡Ü2£©£»
£¨3£©y=2t2-12t+24=2£¨x-3£©2+6£¬
¡ß2£¾0£¬
¡àt¡Ü3ʱ£¬yËætµÄÔö´ó¶ø¼õС£¬
¡àµ±t=2ʱ£¬Èý½ÇÐÎAPQµÄÃæ»ý×îС£¬×îÐ¡Ãæ»ýÊÇ2¡Á22-12¡Á2+24=8cm2£®
µãÆÀ ±¾Ì⿼²éµÄÊǾØÐεÄÐÔÖÊ¡¢º¯Êý½âÎöʽµÄÇ󷨺Ͷþ´Îº¯ÊýµÄÐÔÖÊ£¬Áé»îÔËÓÃÅä·½·¨¡¢ÕÆÎÕ¶þ´Îº¯ÊýµÄÐÔÖÊÊǽâÌâµÄ¹Ø¼ü£®
| A£® | ¼Òµ½Ñ§Ð£µÄ¾àÀëÊÇ2000Ã× | |
| B£® | ÐÞ³µµ¢ÎóµÄʱ¼äÊÇ5·ÖÖÓ | |
| C£® | ÐÞ³µºó×ÔÐгµµÄËÙ¶ÈÊÇÿ·ÖÖÓ200Ã× | |
| D£® | ÐÞ³µÇ°±ÈÐÞ³µºóËÙ¶È¿ì |
| A£® | £¨l£©£¨2£© | B£® | £¨2£©£¨3£© | C£® | £¨2£©£¨4£© | D£® | £¨3£©£¨4£© |