ÌâÄ¿ÄÚÈÝ
Èçͼ1£¬ÔÚÕý·½ÐÎABCDÖУ¬µãE¡¢F·Ö±ðÊDZßBC¡¢ABÉϵĵ㣬ÇÒCE=BF.Á¬½ÓDE£¬¹ýµãE×÷EG¡ÍDE£¬Ê¹EG=DE.Á¬½ÓFG£¬FC.
£¨1£©ÇëÅжϣºFGÓëCEµÄÊýÁ¿¹ØÏµÊÇ £¬Î»ÖùØÏµÊÇ £»
£¨2£©Èçͼ2£¬ÈôµãE¡¢F·Ö±ðÊÇCB¡¢BAÑÓ³¤ÏßÉϵĵ㣬ÆäËüÌõ¼þ²»±ä£¬£¨1£©ÖнáÂÛÊÇ·ñÈÔÈ»³ÉÁ¢£¿Çë³öÅжϲ¢ÓèÒÔÖ¤Ã÷£»
£¨3£©Èçͼ3£¬ÈôµãE¡¢F·Ö±ðÊÇBC¡¢ABÑÓ³¤ÏßÉϵĵ㣬ÆäËüÌõ¼þ²»±ä£¬£¨1£©ÖнáÂÛÊÇ·ñÈÔÈ»³ÉÁ¢£¿ÇëÖ±½Óд³öÄãµÄÅжÏ.
![]()
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
2£®ÏÂÁÐÔËËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | $\sqrt{3}+\sqrt{7}=\sqrt{10}$ | B£® | $\sqrt{{{£¨-2£©}^2}}$=4 | C£® | $\root{3}{27}$=3 | D£® | $\sqrt{\frac{5}{2}}=\frac{{\sqrt{5}}}{2}$ |
3£®
ÈôʵÊýa¡¢bÔÚÊýÖáÉϵÄλÖÃÈçͼËùʾ£¬Ôò»¯¼ò|a+b|+|a-b|µÄ½á¹ûÊÇ£¨¡¡¡¡£©
| A£® | -2b | B£® | b | C£® | -2a | D£® | 2a-b |