题目内容

10.已知△ABC是等边三角形,以BC为直径的半圆O与边AB相交于点D,DE⊥AC,垂足为点E.
(1)判断DE与⊙O的位置关系,并证明你的结论;
(2)若AE=1,求⊙O的直径.

分析 (1)连接OD,由等边三角形的性质得出AB=BC,∠B=∠C=60°,证出△OBD是等边三角形,得出∠BOD=∠C,证出OD∥AC,得出DE⊥OD,即可得出结论;
(2)连接CD,根据圆周角定理和等边三角形的性质得出BD=AD=OB,然后解直角三角形即可求得.

解答 解:(1)DE是⊙O的切线;理由如下:
连接OD,如图1所示:
∵△ABC是等边三角形,
∴AB=BC=AC,∠B=∠C=60°,
∵OB=OD,
∴△OBD是等边三角形,
∴∠BOD=60°,
∴∠BOD=∠C,
∴OD∥AC,
∵DE⊥AC,
∴DE⊥OD,
∴DE是⊙O的切线;
(2)解:连接CD,
∵BC为直径,
∴CD⊥AB,
∴BD=AD=OB,
在直角△ADE中,
∠A=60°,
∴AD=2AE=2,
∴OB=AD=2,
∴BC=2OB=4,即⊙O的直径是4.

点评 本题考查了切线的判定、等边三角形的性质与判定、平行线的判定、三角函数;熟练掌握等边三角形的性质,并能进行推理论证与计算是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网