ÌâÄ¿ÄÚÈÝ
18£®xȡʲôֵʱ£¬´úÊýʽ3-$\frac{x-1}{4}$µÄÖµÊǸºÊý£®·ÖÎö ¸ù¾ÝÌâÒâÁгö²»µÈʽ£¬ÒÀ¾Ý½â²»µÈʽ»ù±¾²½ÖèÒÀ´Î£ºÈ¥·Öĸ¡¢È¥À¨ºÅ¡¢ÒÆÏî¡¢ºÏ²¢Í¬ÀàÏϵÊý»¯Îª1¿ÉµÃ£®
½â´ð ½â£º¸ù¾ÝÌâÒ⣬֪3-$\frac{x-1}{4}$£¼0£¬
È¥·Öĸ£¬µÃ£º12-£¨x-1£©£¼0£¬
È¥À¨ºÅ£¬µÃ£º12-x+1£¼0£¬
ÒÆÏî¡¢ºÏ²¢Í¬ÀàÏµÃ£º-x£¼-13£¬
ϵÊý»¯Îª1£¬µÃ£ºx£¾13£¬
¹Êµ±x£¾13ʱ£¬´úÊýʽ3-$\frac{x-1}{4}$µÄÖµÊǸºÊý£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é½âÒ»ÔªÒ»´Î²»µÈʽµÄ»ù±¾¼¼ÄÜ£¬Ñϸñ×ñѽⲻµÈʽ»ù±¾²½ÖèÊǹؼü£¬ÓÈÆäÐèҪעÒâ²»µÈʽÁ½±ß¶¼³ËÒÔ»ò³ýÒÔͬһ¸ö¸ºÊý£¬²»µÈºÅ·½ÏòÒª¸Ä±ä£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®Á½¸öÏàËÆ¶à±ßÐÎÖܳ¤Ö®±ÈΪ$\sqrt{2}$£º2£¬ÆäÃæ»ý²îΪ6£¬ÔòÁ½¸ö¶à±ßÐεÄÃæ»ý·Ö±ðΪ£¨¡¡¡¡£©
| A£® | 6ºÍ12 | B£® | 6$\sqrt{2}$-6ºÍ6$\sqrt{2}$ | C£® | 2ºÍ8 | D£® | 6$\sqrt{2}+6$ºÍ6$\sqrt{2}$+12 |