题目内容
11.两位同学在解方程组时,甲同学由$\left\{\begin{array}{l}{ax+by=2}\\{cx-7y=8}\end{array}\right.$正确地解出$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$,乙同学因把C写错了解得 $\left\{\begin{array}{l}x=-2\\ y=2\end{array}\right.$,那么a、b、c的正确的值应为多少?分析 把$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$代入$\left\{\begin{array}{l}{ax+by=2}\\{cx-7y=8}\end{array}\right.$得:$\left\{\begin{array}{l}{3a-2b=2}\\{3c+14=8}\end{array}\right.$,把 $\left\{\begin{array}{l}x=-2\\ y=2\end{array}\right.$代入ax+by=2得:-2a+2b=2,组成方程组$\left\{\begin{array}{l}{3a-2b=2}\\{3c+14=8}\\{-2a+2b=2}\end{array}\right.$,解方程组即可.
解答 解:把$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$代入$\left\{\begin{array}{l}{ax+by=2}\\{cx-7y=8}\end{array}\right.$得:$\left\{\begin{array}{l}{3a-2b=2}\\{3c+14=8}\end{array}\right.$,
把 $\left\{\begin{array}{l}x=-2\\ y=2\end{array}\right.$代入ax+by=2得:-2a+2b=2,
∴$\left\{\begin{array}{l}{3a-2b=2}\\{3c+14=8}\\{-2a+2b=2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=4}\\{b=5}\\{c=-2}\end{array}\right.$.
点评 本题考查了二元一次方程组的解,解决本题的关键是组成三元一次方程组.
| A. | 60° | B. | 65° | C. | 70° | D. | 75° |