题目内容
11.分析 首先连接CD,BD,由∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD,DF=DE,继而可得AF=AE,易证得Rt△CDF≌Rt△BDE,则可得BE=CF,继而求得答案.
解答 解:如图,连接CD,BD,![]()
∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,
∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,
∴AE=AF,
∵DG是BC的垂直平分线,
∴CD=BD,
在Rt△CDF和Rt△BDE中,
$\left\{\begin{array}{l}{CD=BD}\\{DF=DE}\end{array}\right.$,
∴Rt△CDF≌Rt△BDE(HL),
∴BE=CF,
∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,
∵AB=22,AC=10,
∴BE=6.
故答案为:6.
点评 此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关题目
6.若$\sqrt{x+2}$+(y-3)2=0,则xy的值是( )
| A. | -8 | B. | 8 | C. | 9 | D. | -9 |
1.下列图形中,不是中心对称图形是( )
| A. | 线段 | B. | 平行四边形 | C. | 圆 | D. | 等腰三角形 |