题目内容

3.完成下面的证明:
如图,已知∠BAG与∠AGD互补,且∠1=∠2,求证:∠E=∠F.
证明:∵∠BAG与∠AGD互补(已知).
∴AB∥CD(同旁内角互补两直线平行)
∴∠BAG=∠AGC(两直线平行,内错角相等)
又∵∠1=∠2(已知)
∴∠BAG-∠1=∠AGC-∠2(等式的性质)
即∠3=∠4
∴AE∥FG(内错角相等,两直线平行)
∴∠E=∠F(两直线平行,内错角相等)

分析 已知∠BAP与∠AGD互补,根据同旁内角互补两直线平行,可得AB∥CD,再根据平行线的判定与性质及等式相等的性质即可得出答案.

解答 证明:∵∠BAG与∠AGD互补(已知),
∴AB∥CD (同旁内角互补两直线平行),
∴∠BAG=∠AGC (两直线平行,内错角相等),
又∵∠1=∠2(已知)
∴∠BAG-∠1=∠AGC-∠2(等式的性质)
即∠3=∠4
∴AE∥FG (内错角相等,两直线平行).
∴∠E=∠F (两直线平行,内错角相等).
故答案为:AB,CD 同旁内角互补两直线平行,AGC,两直线平行,内错角相等,FG,内错角相等,两直线平行,两直线平行,内错角相等.

点评 本题考查了平行线的判定与性质,属于基础题,关键是正确理解与运用平行线的判定与性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网