题目内容

10.【问题情境】
张老师给爱好学习的小军和小俊提出这样的一个问题:如图1,在△ABC中,AB=AC,点P为边BC上任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.

小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
【变式探究】
如图3,当点P在BC延长线上时,其余条件不变,求证:PD-PE=CF;
请运用上述解答中所积累的经验和方法完成下列两题:
【结论运用】
如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
【迁移拓展】
图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2$\sqrt{13}$dm,AD=3dm,BD=$\sqrt{37}$dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.

分析 [问题情境]按照小军,小俊的证明思路即可解决问题.
[变式探究]借鉴小军,小俊的证明思路即可解决问题.
[结论运用]易证BE=BF,过E作EQ⊥BF,垂足,利用问题情境中的结论可得PG+PH=EQ,易证EQ=DC,BF=DF,只需求即可.
[迁移拓展]由条AD×CE=DE×BC联想到三角形相似,从而得∠A=∠ABC,进而补全等腰三角形,△DEM,△CEN的周长之和就可转化AB+BH,而BH是△ADB的上的高,只需利用勾股定理建立方程,求出DH,再求BH,就可解决问题.

解答 解:小军的证明:
连接AP,如图②

∵PD⊥AB,PE⊥AC,CF⊥AB,
∴S△ABC=S△ABP+S△ACP
∴$\frac{1}{2}$AB×CF=$\frac{1}{2}$AB×PD+$\frac{1}{2}$AC×PE,
∵AB=AC,
∴CF=PD+PE.
小俊的证明:
过点P作PG⊥CF,如图2,
∵PD⊥AB,CF⊥AB,PG⊥FC,
∴∠CFD=∠FDG=∠FGP=90°,
∴四边形PDFG为矩形,
∴DP=FG,∠DPG=90°,
∴∠CGP=90°,
∵PE⊥AC,
∴∠CEP=90°,
∴∠PGC=∠CEP,
∵∠BDP=∠DPG=90°,
∴PG∥AB,
∴∠GPC=∠B,
∵AB=AC,
∴∠B=∠ACB,
∴∠GPC=∠ECP,
在△PGC和△CEP中
$\left\{\begin{array}{l}{∠PGC=∠CEP}\\{∠GPC=∠ECP}\\{PC=CP}\end{array}\right.$,
∴△PGC≌△CEP,
∴CG=PE,
∴CF=CG+FG=PE+PD;
【变式探究】
小军的证明思路:连接AP,如图③,

∵PD⊥AB,PE⊥AC,CF⊥AB,
∴∴S△ABC=S△ABP-S△ACP
∴$\frac{1}{2}$AB×CF=$\frac{1}{2}$AB×PD-$\frac{1}{2}$AC×PE,
∵AB=AC,
∴CF=PD-PE;
小俊的证明思路:
过点C,作CG⊥DP,如图③,
∵PD⊥AB,CF⊥AB,CG⊥DP,
∴∠CFD=∠FDG=∠DGC=90°,
∴四边形CFDG是矩形,
∴CF=GD,∠DGC=90°,
∵PE⊥AC,
∴∠CEP=90°,
∴∠CGP=∠CEP,
∵CG⊥DP,AB⊥DP,
∴∠CGP=∠BDP=90°,
∴CG∥AB,
∴∠GCP=∠B,
∵AB=AC,
∴∠B=∠ACB,
∵∠ACB=∠PCE,
∴∠GCP=∠ECP,
在△CGP和△CEP中,
$\left\{\begin{array}{l}{∠CGP=∠CEP=90°}\\{∠GCP=∠ECP}\\{CP=CP}\end{array}\right.$,
∴△CGP≌△CEP,
∴PG=PE,
∴CF=DG=DP-PG=DP-PE.
【结论运用】
如图④

过点E作EQ⊥BC,
∵四边形ABCD是矩形,
∴AD=BC,∠C=∠ADC=90°,
∵AD=8,CF=3,
∴BF=BC-CF=AD-CF=5,
由折叠有,DF=BF,∠BEF=∠DEF,
∴DF=5,
∵∠C=90°,
∴DC=$\sqrt{D{F}^{2}-C{F}^{2}}$=4,
∵EQ⊥BC,∠C=∠ADC=90°,
∴∠EQC=90°=∠C=∠ADC,
∴四边形EQCD是矩形,
∴EQ=DC=4,
∵AD∥BC,
∴∠DEF=∠EFB,
∵∠BEF=∠DEF,
∴∠BEF=∠EFB,
∴BE=BF,
由问题情景中的结论可得:PG+PH=EQ,
∴PG+PH=4.
∴PG+PH的值为4.
【迁移拓展】
延长AD,BC交于点F,作BH⊥AF,如图⑤,

∵AD×CE=DE×BC,
∴$\frac{AD}{DE}=\frac{BC}{EC}$,
∵ED⊥AD,EC⊥CB,
∴∠ADE=∠BCE=90°,
∴△ADE∽△BCE,
∴∠A=∠CBE,
∴FA=FB,
由问题情景中的结论可得:ED+EC=BH,
设DH=x,
∴AH=AD+DH=3+x,
∵BH⊥AF,
∴∠BHA=90°,
∴BH2=BD2-DH2=AB2-AH2
∵AB=2$\sqrt{13}$,AD=3,BD=$\sqrt{37}$,
∴($\sqrt{37}$)2-x2=(2$\sqrt{13}$)2-(3+x)2
∴x=1,
∴BH2=BD2-DH2=37-1=36,
∴BH=6,
∴ED+EC=6,
∵∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点,
∴DM=EM=$\frac{1}{2}$AE,CN=EN=$\frac{1}{2}$BE,
∴△DEM与△CEN的周长之和
=DE+DM+EM+CN+EN+EC
=DE+AE+BE+EC
=DE+AB+EC
=DE+EC+AB
=6+2$\sqrt{13}$,
∴△DEM与△CEN的周长之和(6+2$\sqrt{13}$)dm.

点评 本题是几何变换综合题,考查了矩形的性质与判定,等腰三角形的性质与判定,全等三角形的性质与判定,相似三角形的性质与判定,平行线的性质与判定,直角三角形斜边上的中线等于斜边的一半,勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网