题目内容
当-2<x<2时,下列函数:①y=2x;②y=-2+
x;③y=-
;④y=x2+6x+8,函数值y随自变量x增大而增大的有( )
| 1 |
| 3 |
| 6 |
| x |
| A、①② | B、①②③ |
| C、①②④ | D、①②③④ |
考点:二次函数的性质,一次函数的性质,正比例函数的性质,反比例函数的性质
专题:
分析:根据一次函数,反比例函数,二次函数的增减性,逐一判断.
解答:解::①y=2x中k>0,故y随自变量x增大而增大,满足题意;
②y=-2+
xk>0,故y随自变量x增大而增大,满足题意;
③y=-
中在每一个象限y随自变量x增大而增大,不满足题意;
④y=x2+6x+8,对称轴为x=-3,当x>-3时,y随自变量x增大而增大,故满足题意,
故选C.
②y=-2+
| 1 |
| 3 |
③y=-
| 6 |
| x |
④y=x2+6x+8,对称轴为x=-3,当x>-3时,y随自变量x增大而增大,故满足题意,
故选C.
点评:本题综合考查二次函数、一次函数、反比例函数、正比例函数的增减性(单调性),是一道难度中等的题目.
练习册系列答案
相关题目
m与n两数的倒数的和是( )
A、m+
| ||||
B、
| ||||
C、
| ||||
D、
|
| A、5 | B、10 | C、15 | D、20 |
| A、2 | B、3 | C、4 | D、5 |
下列运算正确的是( )
| A、(a2)3÷a4=a | ||||
B、x2÷x•
| ||||
| C、(6x2+3x)÷3x=2x | ||||
D、(-
|