题目内容
11.解方程3x2+5x+1=0.分析 直接利用求根公式求解一元二次方程的解即可.
解答 解:3x2+5x+1=0,
这里a=3,b=5,c=1,
b2-4ac=52-4×3×1=13,
x=$\frac{-5±\sqrt{13}}{6}$,
x1=$\frac{-5+\sqrt{13}}{6}$,x2=$\frac{-5-\sqrt{13}}{6}$.
点评 本题考查了解一元二次方程的应用,能正确运用公式法解一元二次方程是解此题的关键,难度适中.
练习册系列答案
相关题目
13.若点A(-4,3)、B(m,2)在同一个反比例函数的图象上,则m的值为( )
| A. | 6 | B. | -6 | C. | 12 | D. | -12 |
20.探究题:
(1)小明和小亮在计算这样一道求值题:“当a=-3时,求整式7a2-[5a-(4a-1)+4a2]-(2a2-a+1)的值.”小亮正确求得结果为7,而小明在计算时,错把a=-3看成a=3,但计算结果也是正确的.你能说明为什么吗?
(2)小张买了张50元的乘车IC卡,如果他乘车的次数用m表示,则记录他每次乘车后的余额n(元)如下表:
①写出乘车的次数m表示余额n(元)的关系式;
②利用上述关系式计算小张乘了13次车后还剩下多少元?小张最多能乘多少次车?
(3)观察如下计算:
$\sqrt{4}$×$\sqrt{9}$=6,$\sqrt{4×9}$=6
$\sqrt{16}$×$\sqrt{25}$=20,$\sqrt{16×25}$=20;
$\sqrt{\frac{1}{121}}$×$\sqrt{36}$=$\frac{6}{11}$,$\sqrt{\frac{1}{121}×36}$=$\frac{6}{11}$
你能找出规律吗?请按找到的规律计算:
①$\sqrt{5}$×$\sqrt{20}$
②$\sqrt{1\frac{2}{3}}$×$\sqrt{9\frac{3}{5}}$.
(1)小明和小亮在计算这样一道求值题:“当a=-3时,求整式7a2-[5a-(4a-1)+4a2]-(2a2-a+1)的值.”小亮正确求得结果为7,而小明在计算时,错把a=-3看成a=3,但计算结果也是正确的.你能说明为什么吗?
(2)小张买了张50元的乘车IC卡,如果他乘车的次数用m表示,则记录他每次乘车后的余额n(元)如下表:
| 次数m | 余额n(元) |
| 1 | 50-0.8 |
| 2 | 50-1.6 |
| 3 | 50-2.4 |
| 4 | 50-3.2 |
| … | … |
②利用上述关系式计算小张乘了13次车后还剩下多少元?小张最多能乘多少次车?
(3)观察如下计算:
$\sqrt{4}$×$\sqrt{9}$=6,$\sqrt{4×9}$=6
$\sqrt{16}$×$\sqrt{25}$=20,$\sqrt{16×25}$=20;
$\sqrt{\frac{1}{121}}$×$\sqrt{36}$=$\frac{6}{11}$,$\sqrt{\frac{1}{121}×36}$=$\frac{6}{11}$
你能找出规律吗?请按找到的规律计算:
①$\sqrt{5}$×$\sqrt{20}$
②$\sqrt{1\frac{2}{3}}$×$\sqrt{9\frac{3}{5}}$.