ÌâÄ¿ÄÚÈÝ
15£®£¨1£©Ìî¿Õ£ºa=1.36£¬b=2£»
£¨2£©ÇóÏß¶ÎAB¡¢CDËù±íʾµÄyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨3£©Á½³µÔÚºÎʱ¼ä¶ÎÄÚÀëNµØµÄ·³ÌÖ®²î´ïµ½»ò³¬¹ý30km£¿
·ÖÎö £¨1£©Çó³öC×ø±ê£¬ÔÙ¸ù¾Ýʱ¼ä=$\frac{·³Ì}{ËÙ¶È}$·Ö±ðÇó³ö¼×³µÔÚÆÕͨ¹«Â·ÉÏÐÐÊ»µÄʱ¼ä¼°ÒÒ³µÔÚ¸ßËÙ¹«Â·ÉÏÐÐÊ»µÄʱ¼ä£¬¿ÉµÃa¡¢bµÄÖµ£»
£¨2£©¸ù¾ÝA¡¢B¡¢C¡¢DËĵã×ø±ê´ý¶¨ÏµÊý·¨Çó½â¿ÉµÃÏß¶ÎAB¡¢CDËù±íʾµÄyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨3£©·ÖÀàÌÖÂÛ£ºµ±0£¼x£¼0.1ʱ£¬ÓɽâÎöʽ¿ÉÖª¼×¡¢ÒÒÁ½³µ¾àÀë²î×î´óΪ12£»µ±0.1¡Üx£¼1.36ʱ£¬ÓÉy1-y2¡Ý30Áв»µÈʽ¿ÉµÃxµÄ·¶Î§£»µ±1.36¡Üx¡Ü2ʱ£¬ÓÉy1¡Ý30Áв»µÈʽ¿ÉµÃ´ËʱxµÄ·¶Î§£¬×ÛºÏÒÔÉÏÈýÖÖÇé¿ö¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒ⣬֪£ºµãCµÄ×ø±êΪ£¨0.1£¬126£©£¬
¡àa=0.1+$\frac{126}{100}$=1.36£¬b=$\frac{120}{60}$=2£¬
¹Ê´ð°¸Îª£º1.36£¬2£®
£¨2£©ÉèÏß¶ÎABËù±íʾµÄyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½·Ö±ðΪy1=k1x+b1£¬
½«A£¨0£¬120£©¡¢B£¨2£¬0£©µÄ×ø±ê´úÈëµÃ£º
$\left\{\begin{array}{l}{{b}_{1}=120}\\{2{k}_{1}+{b}_{1}=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{{k}_{1}=-60}\\{{b}_{1}=120}\end{array}\right.$£¬
¡ày1=-60x+120£»
ÉèÏß¶ÎCDËù±íʾµÄyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½·Ö±ðΪy2=k2x+b2£¬
½«C£¨0.1£¬126£©¡¢D£¨1.36£¬0£©µÄ×ø±ê´úÈëµÃ£º
$\left\{\begin{array}{l}{0.1{k}_{2}+{b}_{2}=126}\\{1.36{k}_{2}+{b}_{2}=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{{k}_{2}=-100}\\{{b}_{2}=136}\end{array}\right.$£¬
¡ày2=-100x+136£®
£¨3£©ÓÉÌâÒ⣬¢Ùµ±x=0.1ʱ£¬Á½³µÀëNµØµÄ·³ÌÖ®²îÊÇ12km£¬
¡àµ±0£¼x£¼0.1ʱ£¬Á½³µÀëNµØµÄ·³ÌÖ®²î²»¿ÉÄÜ´ïµ½»ò³¬¹ý30km£®
¢Úµ±0.1¡Üx£¼1.36ʱ£¬ÓÉy1-y2¡Ý30£¬µÃ£¨-60x+120£©-£¨-100x+136£©¡Ý30£¬
½âµÃx¡Ý1.15£®
¼´µ±1.15¡Üx£¼1.36ʱ£¬Á½³µÀëNµØµÄ·³ÌÖ®²î´ïµ½»ò³¬¹ý30km£®
¢Ûµ±1.36¡Üx¡Ü2ʱ£¬ÓÉy1¡Ý30£¬µÃ-60x+120¡Ý30£¬½âµÃx¡Ü1.5£®
¼´µ±1.36¡Üx¡Ü1.5ʱ£¬Á½³µÀëNµØµÄ·³ÌÖ®²î´ïµ½»ò³¬¹ý30km£®
×ÛÉÏ£¬µ±1.15¡Üx¡Ü1.5ʱ£¬Á½³µÀëNµØµÄ·³ÌÖ®²î´ïµ½»ò³¬¹ý30km£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÒ»´Îº¯ÊýµÄͼÏó¡¢´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¼°Ò»´Îº¯ÊýµÄʵ¼ÊÓ¦ÓÃÄÜÁ¦£¬¸ù¾ÝÌâÒâ׼ȷµÄ·ÖÀàÌÖÂÛÊǽâÌâµÄ¹Ø¼ü£®
| A£® | ACÊÇ¡ÏBADµÄƽ·ÖÏß | B£® | AC¡ÍBD | ||
| C£® | AC=BD | D£® | AC£¾2BP |
| A£® | 2 ¸ö | B£® | 3¸ö | C£® | 4¸ö | D£® | 5¸ö |