题目内容

18.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=125°.

分析 根据角平分线的作法可得AD平分∠CAB,再根据三角形内角和定理可得∠ADB的度数.

解答 解:由题意可得:AD平分∠CAB,
∵∠C=90°,∠B=20°,
∴∠CAB=70°,
∴∠CAD=∠BAD=35°,
∴∠ADB=180°-20°-35°=125°.
故答案为:125°.

点评 此题主要考查了角平分线的作法以及角平分线的性质,熟练根据角平分线的性质得出∠ADB度数是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网