题目内容

9.如图,已知AB是⊙O的直径,弦CD⊥AB,连结BD、BC,若∠ABD=56°,则∠C的度数为(  )
A.28°B.34°C.44°D.56°

分析 连接AD,由AB是⊙O的直径,根据直径所对的圆周角是直角,即可求得∠ADB=90°,继而求得∠A的度数,然后由圆周角定理,求得∠BCD的度数.

解答 解:连接AD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠ABD=56°,
∴∠A=90°-∠ABD=34°,
∴∠C=∠A=34°.
故选B.

点评 此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握辅助线的作法,注意直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网