ÌâÄ¿ÄÚÈÝ
2£®Èçͼ¢ÙËùʾ£¬ÒÑÖªÅ×ÎïÏßy=-x2+4x+5µÄ¶¥µãΪD£¬ÓëxÖá½»ÓÚA¡¢BÁ½µã£¨A×óBÓÒ£©£¬ÓëyÖá½»ÓÚCµã£¬EΪÅ×ÎïÏßÉÏÒ»µã£¬ÇÒC¡¢E¹ØÓÚÅ×ÎïÏߵĶԳÆÖá¶Ô³Æ£¬×÷Ö±ÏßAE£®£¨1£©ÇóÖ±ÏßAEµÄ½âÎöʽ£»
£¨2£©ÔÚͼ¢ÚÖУ¬Èô½«Ö±ÏßAEÑØxÖá·ÕÛºó½»Å×ÎïÏßÓÚµãF£¬ÔòµãFµÄ×ø±êΪ£¨6£¬-7£©£¨Ö±½ÓÌî¿Õ£©£»
£¨3£©µãPΪÅ×ÎïÏßÉÏÒ»¶¯µã£¬¹ýµãP×÷Ö±ÏßPGÓëyÖáÆ½ÐУ¬½»Ö±ÏßAEÓÚµãG£¬ÉèµãPµÄºá×ø±êΪm£¬µ±S¡÷PGE£ºS¡÷BGE=2£º3ʱ£¬Ö±½Óд³öËùÓзûºÏÌõ¼þµÄmÖµ£¬²»±ØËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾ÝÅ×ÎïÏߵĽâÎöʽ¿ÉÕÒ³ö¸ÃÅ×ÎïÏߵĶԳÆÖáΪx=2ÒÔ¼°µãA¡¢B¡¢CµÄ×ø±ê£¬ÓɵãCµÄ×ø±ê½áºÏC¡¢E¹ØÓÚÅ×ÎïÏߵĶԳÆÖá¶Ô³Æ£¬¿ÉÇó³öµãEµÄ×ø±ê£¬ÉèÖ±ÏßAEµÄ½âÎöʽΪy=kx+b£¬ÓɵãA¡¢EµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öÖ±ÏßAEµÄ½âÎöʽ£»
£¨2£©ÉèÖ±ÏßAFµÄ½âÎöʽΪy=ax+c£¬ÕÒ³öµãE¹ØÓÚxÖá¶Ô³ÆµÄµãµÄ×ø±ê£¬ÀûÓøõãºÍAµã×ø±êÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öÖ±ÏßAFµÄ½âÎöʽ£¬ÔÙÁªÁ¢Ö±ÏßAFÒÔ¼°Å×ÎïÏߵĽâÎöʽ³É·½³Ì×飬½â·½³Ì×é¼´¿ÉÇó³öµãFµÄ×ø±ê£»
£¨3£©¹ýµãP×÷PP¡ä¡ÍÖ±ÏßAEÓÚµãP¡ä£¬¹ýµãB×÷BB¡ä¡ÍÖ±ÏßAEÓÚµãB¡ä£¬Ôò¡÷PP¡äGºÍ¡÷BB¡äAΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬¸ù¾Ý¡÷PGEºÍ¡÷BGEÖÐÓÐÏàͬµÄµ×±ßGEÇÒS¡÷PGE£ºS¡÷BGE=2£º3£¬¼´¿ÉµÃ³öPG£ºAB=2£º3£¬ÓɵãPµÄºá×ø±ê¼´¿ÉµÃ³öµãP¡¢GµÄ×ø±ê½ø¶ø¿ÉµÃ³öPGµÄ³¤¶È£¬ÔÙ¸ù¾ÝA¡¢BµÄ×ø±ê¼´¿ÉµÃ³öABµÄ³¤¶È£¬ÓÉ$\frac{PG}{AB}$=$\frac{2}{3}$¼´¿ÉµÃ³ö|m2-3m-4|=4£¬½âÖ®¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏߵĽâÎöʽΪy=-x2+4x+5£¬
¡à¸ÃÅ×ÎïÏߵĶԳÆÖáΪ£ºx=-$\frac{4}{2¡Á£¨-1£©}$=2£®
Áîy=-x2+4x+5ÖÐx=0£¬Ôòy=5£¬
¡àµãCµÄ×ø±êΪ£¨0£¬5£©£®
¡ßC¡¢E¹ØÓÚÅ×ÎïÏߵĶԳÆÖá¶Ô³Æ£¬
¡àµãEµÄ×ø±êΪ£¨2¡Á2-0£¬5£©£¬¼´£¨4£¬5£©£®
Áîy=-x2+4x+5ÖÐy=0£¬Ôò-x2+4x+5=0£¬
½âµÃ£ºx1=-1£¬x2=5£¬
¡àµãAµÄ×ø±êΪ£¨-1£¬0£©¡¢µãBµÄ×ø±êΪ£¨5£¬0£©£®
ÉèÖ±ÏßAEµÄ½âÎöʽΪy=kx+b£¬
½«µãA£¨-1£¬0£©¡¢E£¨4£¬5£©´úÈëy=kx+bÖУ¬
µÃ£º$\left\{\begin{array}{l}{0=-k+b}\\{5=4k+b}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{k=1}\\{b=1}\end{array}\right.$£¬
¡àÖ±ÏßAEµÄ½âÎöʽΪy=x+1£®
£¨2£©ÉèÖ±ÏßAFµÄ½âÎöʽΪy=ax+c£¬
¡ßµãEµÄ×ø±êΪ£¨4£¬5£©£¬
¡àµãE¹ØÓÚxµÄ¶Ô³ÆµãµÄ×ø±êΪ£¨4£¬-5£©£¬
½«µã£¨-1£¬0£©¡¢£¨4£¬-5£©´úÈëy=ax+cÖУ¬
µÃ£º$\left\{\begin{array}{l}{0=-a+c}\\{-5=4a+c}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{a=-1}\\{c=-1}\end{array}\right.$£¬
¡àÖ±ÏßAFµÄ½âÎöʽΪy=-x-1£®
ÁªÁ¢Ö±ÏßAFÓëÅ×ÎïÏߵĽâÎöʽ³É·½³Ì×飺$\left\{\begin{array}{l}{y=-x-1}\\{y=-{x}^{2}+4x+5}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=-1}\\{y=0}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{x=6}\\{y=-7}\end{array}\right.$£¬
¡àµãFµÄ×ø±êΪ£¨6£¬-7£©£¬
¹Ê´ð°¸Îª£¨6£¬-7£©£®
£¨3£©¹ýµãP×÷PP¡ä¡ÍÖ±ÏßAEÓÚµãP¡ä£¬¹ýµãB×÷BB¡ä¡ÍÖ±ÏßAEÓÚµãB¡ä£¬ÈçͼËùʾ£®![]()
¡ßÖ±ÏßAEµÄ½âÎöʽΪy=x+1£¬
¡à¡÷PP¡äGºÍ¡÷BB¡äAΪµÈÑüÖ±½ÇÈý½ÇÐΣ®
ÔÚ¡÷PGEºÍ¡÷BGEÖÐÓÐÏàͬµÄµ×±ßGE£¬ÇÒS¡÷PGE£ºS¡÷BGE=2£º3£¬
¡àPP¡ä£ºBB¡ä=2£º3£¬
¡àPG£ºAB=2£º3£®
¡ßµãPµÄºá×ø±êΪm£¬ÇÒµãPÔÚÅ×ÎïÏßy=-x2+4x+5µÄͼÏóÉÏ£¬µãGÔÚÖ±Ïßy=x+1ÉÏ£¬
¡àµãPµÄ×ø±êΪ£¨m£¬-m2+4m+5£©£¬µãGµÄ×ø±êΪ£¨m£¬m+1£©£¬
¡àPG=|-m2+4m+5-£¨m+1£©|=|m2-3m-4|£®
¡ßµãBµÄ×ø±êΪ£¨5£¬0£©£¬µãAµÄ×ø±êΪ£¨-1£¬0£©£¬
¡àAB=5-£¨-1£©=6£¬
¡à$\frac{PG}{AB}$=$\frac{|{m}^{2}-3m-4|}{6}$=$\frac{2}{3}$£¬¼´|m2-3m-4|=4£¬
½âµÃ£ºm1=0£¬m2=3£¬m3=$\frac{3-\sqrt{41}}{2}$£¬m4=$\frac{3+\sqrt{41}}{2}$£¬
¡àµ±S¡÷PGE£ºS¡÷BGE=2£º3ʱ£¬·ûºÏÌõ¼þµÄmֵΪ0¡¢3¡¢$\frac{3-\sqrt{41}}{2}$ºÍ$\frac{3+\sqrt{41}}{2}$£®
µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢¶þ´Îº¯ÊýµÄÐÔÖÊ¡¢µãµÄ¶Ô³Æ¡¢½â¶þÔª¶þ´Î·½³Ì×éÒÔ¼°µãµ½Ö±ÏߵľàÀ룬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©Çó³öµãEµÄ×ø±ê£»£¨2£©Çó³öÖ±ÏßAFµÄ½âÎöʽ£»£¨3£©ÕÒ³ö¹ØÓÚmµÄº¬¾ø¶ÔÖµ·ûºÅµÄÒ»Ôª¶þ´Î·½³Ì£®±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬µ«½âÌâ¹ý³ÌÉÔÏÔ·±Ëö£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬ÕÒ³öµãµÄ×ø±ê£¬½áºÏµãµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨Çó³öº¯Êý½âÎöʽÊǹؼü£®
| A£® | 190¡ã | B£® | 130¡ã | C£® | 100¡ã | D£® | 80¡ã |
£¨1£©Õâ¸öÎÊÌâÖУ¬×ÜÌåÊÇ1000Ãû³õÈý±ÏÒµ°àѧÉúÿ·ÖÖÓÌøÉþ´ÎÊýµÄÈ«Ì壻 Ñù±¾ÈÝÁ¿a=100£»
£¨2£©µÚËÄС×éµÄƵÊýb=40£¬ÆµÂÊc=0.40£»
£¨3£©Èô´ÎÊýÔÚ110´Î£¨º¬110´Î£©ÒÔÉÏΪ´ï±ê£¬ÊÔ¹À¼Æ¸ÃУ³õÈý±ÏÒµÉúÒ»·ÖÖÓÌøÉþµÄ´ï±êÂÊÊǶàÉÙ£¿
| ×é±ð | ·Ö ×é | ƵÊý | ƵÂÊ |
| 1 | 89.5¡«99.5 | 4 | 0.04 |
| 2 | 99.5¡«109.5 | 3 | 0.03 |
| 3 | 109.5¡«119.5 | 45 | 0.45 |
| 4 | 119.5¡«129.5 | b | c |
| 5 | 129.5¡«139.5 | 6 | 0.06 |
| 6 | 139.5¡«149.5 | 2 | 0.02 |
| ºÏ ¼Æ | a | 1.00 | |
| A£® | 2n | B£® | 2n-1 | C£® | £¨$\sqrt{2}$£©n | D£® | £¨$\sqrt{2}$£©n-1 |
| A£® | 22.5¡ã | B£® | 36¡ã | C£® | 45¡ã | D£® | 90¡ã |