题目内容

下列条件中,能判定△ABC为直角三角形的是( )

A. ∠A=∠B=∠C B. ∠A+∠B=2∠C

C. ∠A∶∠B∶∠C=1∶2∶3 D. ∠A=∠B=∠C

C 【解析】试题解析:A. ,∠A=∠B=∠C不能确定△ABC为直角三角形,所以A选项错误; B. ,而∠A+∠B=2∠C,则所以B选项错误; C. ,而∠A∶∠B∶∠C=1∶2∶3,则,所以C选项正确; D. ,而则所以D选项错误. 故选C.
练习册系列答案
相关题目

下面四个图形中,线段BE是△ABC的高的图是(  )

A. B. C. D.

D 【解析】试题分析:根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断. 【解析】 线段BE是△ABC的高的图是选项D. 故选D.

在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.

(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A.请完成下列表格:

事件A

必然事件

随机事件

m的值

(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的可能性大小是,求m的值.

(1)填表见解析;(2)2. 【解析】试题分析:(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件; (2)利用概率公式列出方程,求得m的值即可. 试题解析:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件; 当摸出2个或3个时,摸到黑球为随机事件, 故答案为:4;2,3. (2)根据题意得: , 解得:m=2, 所以m的...

如图,在Rt△POQ中,OP=OQ=4,M是PQ中点,∠P=∠Q=45°,将一三角尺的直角顶点放在点M处,以M为旋转中心旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.试说明:MA=MB.

+

说明见解析 【解析】试题分析:过点M作ME⊥PO,MF⊥QO,可得四边形OEBF是矩形,根据三角形的中位线定理可得ME=MF,再根据同角的余角相等可得再利用“角边角”证明和全等,根据全等三角形对应边相等即可证明; 试题解析:过点M作ME⊥PO,MF⊥QO, ∴∠PEM=∠QFM=90°,又∵∠P=∠Q=45°, ∴∠PME=∠QMF=45°,∠EMF=90°, 又∵P...

长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为__________.

≤x< 【解析】试题解析:∵围成两个全等的三角形可得两个三角形的周长相等, ∴可得 又因为x为最长边大于周长的, 综上可得 故答案为:

锐角三角形中,最大角α的取值范围是( )

A. 0°< α < 90° B. 60°< α < 180° C. 60°< α < 90° D. 60°≤α < 90°

D 【解析】试题分析:根据三角形的内角和定理,又α是最大角,得:3α≥180°,即α≥60°,故最大角α的取值范围是60°≤α<180度.

如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为(  )

A. 65° B. 60° C. 55° D. 45°

A 【解析】分析:根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC, 求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论. 详解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC. ∵∠C=30°,∴∠DAC=30°. ∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°. ...

如图,过正方形ABCD的顶点B作直线l,过点A,C作l的垂线,垂足分别为点E,F.若AE=2,CF=6,则AB的长度为

. 【解析】 试题分析:∵四边形ABCD是正方形, ∴∠CBF+∠FBA=90°,∠CBF+∠BCF=90°, ∴∠BCF=∠ABE, ∵∠AEB=∠BFC=90°,AB=BC, ∴△ABE≌△BCF(AAS) ∴AE=BF,BE=CF, ∴AB=. 故答案是.

如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.

32.5°. 【解析】试题分析:已知AB∥CD,∠B=65°,根据平行线的性质可求得∠BCE =115°;再由角平分线的定义求得∠ECM的度数,即可求得∠DCN的度数. 试题解析: ∵ AB∥CD,∴ ∠B+∠BCE =180°(两直线平行,同旁内角互补) ∵ ∠B =65°,∴ ∠BCE =115° ∵ CM平分∠BCE,∴ ∠ECM=∠BCE =57.5° ...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网