ÌâÄ¿ÄÚÈÝ
10£®ÒÑÖª£º$\frac{1}{1¡Á2}$=1-$\frac{1}{2}$£»$\frac{1}{2¡Á3}$=$\frac{1}{2}-\frac{1}{3}$£»$\frac{1}{3¡Á4}$=$\frac{1}{3}-\frac{1}{4}$£»$\frac{1}{4¡Á5}$=$\frac{1}{4}$-$\frac{1}{5}$£»¡£¨1£©Ìî¿Õ£º$\frac{1}{2}$+$\frac{1}{2¡Á3}$+$\frac{1}{3¡Á4}$+¡+$\frac{1}{n£¨n+1£©}$=$\frac{n}{n+1}$£»
£¨2£©¸ù¾ÝÄã·¢ÏֵĹæÂɽⷽ³Ì£º
$\frac{1}{£¨x+2£©£¨x+3£©}$+$\frac{1}{£¨x+3£©£¨x+4£©}$+$\frac{1}{£¨x+4£©£¨x+5£©}$+¡+$\frac{1}{£¨x+2013£©£¨x+2014£©}$=$\frac{x}{£¨x+2£©£¨x+2014£©}$£®
·ÖÎö £¨1£©¹éÄÉ×ܽáµÃµ½²ðÏî¹æÂÉ£¬½«Ôʽ±äÐκó¼ÆËã¼´¿ÉµÃµ½½á¹û£»
£¨2£©ÀûÓõóöµÄ²ðÏî¹æÂɽ«·½³Ì±äÐΣ¬Çó³ö½â£¬¼ìÑé¼´¿É£®
½â´ð ½â£º£¨1£©Ôʽ=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+¡+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$£»
£¨2£©·½³ÌÕûÀíµÃ£º$\frac{1}{x+2}$-$\frac{1}{x+3}$+$\frac{1}{x+3}$-$\frac{1}{x+4}$+¡+$\frac{1}{x+2013}$-$\frac{1}{x+2014}$=$\frac{x}{£¨x+2£©£¨x+2014£©}$£¬
¼´$\frac{2012}{£¨x+2£©£¨x+2014£©}$=$\frac{x}{£¨x+2£©£¨x+2014£©}$£¬
È¥·ÖĸµÃ£ºx=2012£¬
¾¼ìÑéx=2012ÊÇ·Öʽ·½³ÌµÄ½â£®
¹Ê´ð°¸Îª£º£¨1£©$\frac{n}{n+1}$
µãÆÀ ´ËÌ⿼²éÁ˽â·Öʽ·½³Ì£¬½â·Öʽ·½³ÌµÄ»ù±¾Ë¼ÏëÊÇ¡°×ª»¯Ë¼Ï롱£¬°Ñ·Öʽ·½³Ìת»¯ÎªÕûʽ·½³ÌÇó½â£®½â·Öʽ·½³ÌÒ»¶¨×¢ÒâÒªÑé¸ù£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
18£®
Èçͼ£¬ÔÚ¡÷ABCÖУ¬BC=5£¬AC=8£¬ABµÄ´¹Ö±Æ½·ÖÏß½»ABÓÚµãD£¬½»ACÓÚµãE£¬Ôò¡÷BCEµÄÖܳ¤µÈÓÚ£¨¡¡¡¡£©
| A£® | 18 | B£® | 15 | C£® | 13 | D£® | 12 |
15£®Èç¹ûx2+xy=3£¬y2+xy=-2£¬ÄÇôx2+3xy+2y2=£¨¡¡¡¡£©
| A£® | -1 | B£® | 1 | C£® | 2 | D£® | 3 |