题目内容

14.计算:$\frac{1}{{\sqrt{3}+\sqrt{2}}}-{2^{-1}}+{(cos{60°}+\frac{1}{2})^0}-{3^{\frac{1}{2}}}$.

分析 分别依据分母有理化、负整指数幂、特殊锐角三角函数值和零指数幂、分数指数幂将各部分计算化简可得.

解答 解:原式=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$-$\frac{1}{2}$+($\frac{1}{2}+\frac{1}{2}$)0-$\sqrt{3}$
=$\sqrt{3}-\sqrt{2}$-$\frac{1}{2}$+1-$\sqrt{3}$
=$\frac{1}{2}$-$\sqrt{2}$.

点评 本题主要考查了二次根式的混合运算,运用了分母有理化、负指数幂、特殊锐角三角函数值和零指数幂、分数指数幂等知识点,熟练掌握这些计算法则是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网