题目内容

2.解方程组:
(1)$\left\{\begin{array}{l}{x-3y=6}\\{5x+2y=13}\end{array}\right.$
(2)$\left\{\begin{array}{l}{3x-4y=-6}\\{5x+3y=19}\end{array}\right.$.

分析 (1)方程组利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{x-3y=6①}\\{5x+2y=13②}\end{array}\right.$,
由①得x=6+3y③,
把③代入②得30+15y+2y=13,即y=-1,
把y=-1代入③得x=3,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$;

(2)$\left\{\begin{array}{l}{3x-4y=-6①}\\{5x+3y=19②}\end{array}\right.$,
①×3+②×4得:29x=58,即x=2,
把x=2代入①得:y=3,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网