题目内容
12.如图1所示,△ABO与△CDO称为“对顶三角形”,其中∠A+∠B=∠C+∠D.利用这个结论,在图2中,∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.分析 先连接BE,构造“对顶三角形”,得出∠C+∠D=∠CBE+∠DEB,再根据五边形内角和为540°,得出∠A+∠ABE+∠BEF+∠F+∠G=540°,进而得到∠A+∠ABC+∠C+∠D+∠DEF+∠F+∠G=540°.
解答
解:如图2,连接BE,
由对顶三角形可得,∠C+∠D=∠CBE+∠DEB,
∵五边形ABEFG中,∠A+∠ABE+∠BEF+∠F+∠G=540°,
即∠A+∠ABC+∠CBE+∠BED+∠DEF+∠F+∠G=540°,
∴∠A+∠ABC+∠C+∠D+∠DEF+∠F+∠G=540°,
故答案为:540.
点评 本题主要考查了多边形内角和定理的运用,解决问题的关键是作辅助线构造“对顶三角形”以及五边形,并得出∠C+∠D=∠CBE+∠DEB.解题时注意,五边形的内角和为540°.
练习册系列答案
相关题目
3.在“线段、角、直角三角形、等边三角形”四个图形中,一定是轴对称图形的个数是( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
4.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为( )
| A. | 2$\sqrt{2}$-2 | B. | 2-$\sqrt{2}$ | C. | $\sqrt{2}$-1 | D. | $\sqrt{2}$ |
1.|-7|的相反数是( )
| A. | $\frac{1}{7}$ | B. | -$\frac{1}{7}$ | C. | 7 | D. | -7 |