题目内容

11.如图,已知E、F为平行四边形ABCD的对角线上的两点,且BE=DF,∠AEC=90°.求证:四边形AECF为矩形.

分析 连接AC交BD于O,由平行四边形的性质得出OA=OC,OB=OD,由已知条件得出OE=OF,证出四边形AECF为平行四边形,再由∠AEC=90°,即可得出结论.

解答 证明:连接AC交BD于O,如图所示:
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD.
∵BE=DF,
∴OE=OF.
∵OA=OC,
∴AECF是平行四边形;
∵∠AEC=90°,
∴四边形AECF为矩形.

点评 本题考查了矩形的判定、平行四边形的判定与性质,熟练掌握平行四边形的性质,证明四边形AECF是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网