题目内容

6.如图,已知正比例函数y=kx(k>0)的图象与x轴相交所成的锐角为70°,定点A的坐标为(0,4),P为y轴上的一个动点,M、N为函数y=kx(k>0)的图象上的两个动点,则AM+MP+PN的最小值为(  )
A.2B.4sin40°
C.2$\sqrt{3}$D.4sin20°(1+cos20°+sin20°cos20°)

分析 如图所示直线OC、y轴关于直线y=kx对称,直线OD、直线y=kx关于y轴对称,点A′是点A关于直线y=kx的对称点,作A′E⊥OD垂足为E,交y轴于点P,交直线y=kx于M,作PN⊥直线y=kx垂足为N,此时AM+PM+PN=A′M+PM+PE=A′E最小(垂线段最短),在RT△A′EO中利用勾股定理即可解决.

解答 解:如图所示,直线OC、y轴关于直线y=kx对称,直线OD、直线y=kx关于y轴对称,点A′是点A关于直线y=kx的对称点.
作A′E⊥OD垂足为E,交y轴于点P,交直线y=kx于M,作PN⊥直线y=kx垂足为N,
∵PN=PE,AM=A′M,
∴AM+PM+PN=A′M+PM+PE=A′E最小(垂线段最短),
在RT△A′EO中,∵∠A′EO=90°,OA′=4,∠A′OE=3∠AOM=60°,
∴OE=$\frac{1}{2}$OA′=2,A′E=$\sqrt{OA{′}^{2}-O{E}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$.
∴AM+MP+PN的最小值为2$\sqrt{3}$.
故选C.

点评 本题考查轴对称-最短问题、垂线段最短、直角三角形30度角的性质、勾股定理等知识,解题的关键是利用轴对称性质正确找到等P的位置,题目有点难度,是最短问题中比较难的题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网