题目内容
9.分析 根据角平分线的定义可得∠CBP=$\frac{1}{2}$∠ABC,根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义表示出∠DCP,然后整理即可得到∠P=$\frac{1}{2}$∠A,代入数据计算即可得解.
解答 解:∵BP平分∠ABC,
∴∠CBP=$\frac{1}{2}$∠ABC,
∵CP平分△ABC的外角,
∴∠DCP=$\frac{1}{2}$∠ACD=$\frac{1}{2}$(∠A+∠ABC)=$\frac{1}{2}$∠A+$\frac{1}{2}$∠ABC,
在△BCP中,由三角形的外角性质,∠DCP=∠CBP+∠P=$\frac{1}{2}$∠ABC+∠P,
∴$\frac{1}{2}$∠A+$\frac{1}{2}$∠ABC=$\frac{1}{2}$∠ABC+∠P,
∴∠P=$\frac{1}{2}$∠A=$\frac{1}{2}$×40°=20°.
点评 本题考查了三角形的外角性质的应用,能正确运用性质进行推理和计算是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.
练习册系列答案
相关题目
14.已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,设△ABC的面积为S,周长为l.
(1)填表:
(2)如果a+b-c=m,观察上表猜想:$\frac{S}{l}$=$\frac{m}{4}$ (用含有m的代数式表示).
(3)证明(2)中的结论.
(1)填表:
| 三边a、b、c | a+b-c | $\frac{S}{l}$ |
| 3、4、5 | 2 | $\frac{1}{2}$ |
| 5、12、13 | 4 | 1 |
| 8、15、17 | 6 | $\frac{3}{2}$ |
(3)证明(2)中的结论.