题目内容

7.如图,AD,AC分别是⊙O的直径和弦.且∠CAD=30°.OB⊥AD交AC于点B.若OB=4,则BC长为(  )
A.2B.3C.3.6D.4

分析 首先连接CD,由圆周角定理可得∠C=90°,又由∠CAD=30°,OB⊥AD,OB=4,即可求得OA,AB的长,然后在Rt△ACD中,由三角函数的性质,即可求得答案.

解答 解:连接CD,
∵AD是⊙O的直径,
∴∠C=90°,
∵OB⊥AD,
∴∠AOB=∠C=90°,
在Rt△AOB中,∠CAD=30°,OB=4,
∴AB=2OB=8,OA=$\frac{OB}{tan30°}$=4$\sqrt{3}$,
∴AD=2OA=8$\sqrt{3}$,
在Rt△ABC中,AC=AD•cos30°=8$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=12,
∴BC=AC-AB=12-8=4.
故选D.

点评 此题考查了圆周角定理、含30°直角三角形的性质以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网