题目内容
16.二元二次方程组$\left\{\begin{array}{l}{x+y=3}\\{xy=-10}\end{array}\right.$的解是( )| A. | $\left\{\begin{array}{l}{{x}_{1}=-5}\\{{y}_{1}=2}\end{array}\right.$ $\left\{\begin{array}{l}{{x}_{2}=2}\\{{y}_{2}=-5}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{{x}_{1}=5}\\{{y}_{1}=2}\end{array}\right.$ $\left\{\begin{array}{l}{{x}_{2}=2}\\{{y}_{2}=5}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{{x}_{1}=5}\\{{y}_{1}=-2}\end{array}\right.$ $\left\{\begin{array}{l}{{x}_{2}=-2}\\{{y}_{2}=5}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{{x}_{1}=-5}\\{{y}_{1}=-2}\end{array}\right.$ $\left\{\begin{array}{l}{{x}_{2}=-2}\\{{y}_{2}=-5}\end{array}\right.$ |
分析 将x、y看作是一元二次方程a2-3a-10=0的两个根,故只需求出该方程的解即可.
解答 解:由题意可知:x、y是一元一次方程a2-3a-10=0的两个根,
∵a2-3a-10=(a-5)(a+2)=0
∴a1=5,a2=-2
故:选C
点评 本题考查了一元二次方程的根与系数的关系的变相应用问题,解题的关键是将$\left\{\begin{array}{l}{x+y=3}\\{xy=-10}\end{array}\right.$的解x、y看作是一元二次方程a2-3a-10=0的两个根从而更简便地解决问题.
练习册系列答案
相关题目
4.下列各式中正确的是( )
| A. | -2+1=-3 | B. | -5-2=-3 | C. | -12=1 | D. | (-1)3=-1 |