题目内容
7.若x-2y=-2,则2017-3x+6y=2023.分析 先变形,再整体代入求出即可.
解答 解:∵x-2y=-2,
∴2017-3x+6y=2017-3(x-2y)=2017-3×(-2)=2023,
故答案为:2023.
点评 本题考查了求代数式的值的应用,能够整体代入是解此题的关键.
练习册系列答案
相关题目
17.小明准备测量一段河水的深度,他把一根竹竿直插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )
| A. | 2 m | B. | 2.5 m | C. | 2.25 m | D. | 3 m |
12.($\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{4}+\sqrt{3}}$+…+$\frac{1}{\sqrt{2014}+\sqrt{2013}}$)•($\sqrt{2014}$+1)=( )
| A. | 2012 | B. | 2013 | C. | 2014 | D. | 2015 |
16.二元二次方程组$\left\{\begin{array}{l}{x+y=3}\\{xy=-10}\end{array}\right.$的解是( )
| A. | $\left\{\begin{array}{l}{{x}_{1}=-5}\\{{y}_{1}=2}\end{array}\right.$ $\left\{\begin{array}{l}{{x}_{2}=2}\\{{y}_{2}=-5}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{{x}_{1}=5}\\{{y}_{1}=2}\end{array}\right.$ $\left\{\begin{array}{l}{{x}_{2}=2}\\{{y}_{2}=5}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{{x}_{1}=5}\\{{y}_{1}=-2}\end{array}\right.$ $\left\{\begin{array}{l}{{x}_{2}=-2}\\{{y}_{2}=5}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{{x}_{1}=-5}\\{{y}_{1}=-2}\end{array}\right.$ $\left\{\begin{array}{l}{{x}_{2}=-2}\\{{y}_{2}=-5}\end{array}\right.$ |