题目内容
8.(1)若∠AOD=52°,求∠DEB的度数;
(2)若OC=3,BC=3$\sqrt{3}$,求弧$\widehat{AB}$的长.
分析 (1)运用垂径定理证明$\widehat{AD}$=$\widehat{BD}$,借助圆周角定理的推论即可解决问题;
(2)连接OB,根据勾股定理求出OA的长,再由锐角三角函数的定义求出∠AOC的度数,根据弧长公式即可得出结论.
解答
解:(1)∵OD⊥AB,
∴$\widehat{AD}$=$\widehat{BD}$,
∴∠DEB=$\frac{1}{2}$=26°,即∠DEB的度数为26°;
(2)连接OB,
∵OD⊥AB,BC=3$\sqrt{3}$,
∴AC=BC=3$\sqrt{3}$,
∴OA=$\sqrt{O{C}^{2}+A{C}^{2}}$=$\sqrt{{3}^{2}+(3\sqrt{3})^{2}}$=6,tan∠AOC=$\frac{AC}{OC}$=$\frac{3\sqrt{3}}{3}$=$\sqrt{3}$,
∴∠AOC=60°,
∴∠AOB=2∠AOD=120°,
∴$\widehat{AB}$=$\frac{120π×3}{180}$=4π.
点评 本题考查的是圆周角定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关题目
16.二元二次方程组$\left\{\begin{array}{l}{x+y=3}\\{xy=-10}\end{array}\right.$的解是( )
| A. | $\left\{\begin{array}{l}{{x}_{1}=-5}\\{{y}_{1}=2}\end{array}\right.$ $\left\{\begin{array}{l}{{x}_{2}=2}\\{{y}_{2}=-5}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{{x}_{1}=5}\\{{y}_{1}=2}\end{array}\right.$ $\left\{\begin{array}{l}{{x}_{2}=2}\\{{y}_{2}=5}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{{x}_{1}=5}\\{{y}_{1}=-2}\end{array}\right.$ $\left\{\begin{array}{l}{{x}_{2}=-2}\\{{y}_{2}=5}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{{x}_{1}=-5}\\{{y}_{1}=-2}\end{array}\right.$ $\left\{\begin{array}{l}{{x}_{2}=-2}\\{{y}_{2}=-5}\end{array}\right.$ |
13.若等腰直角三角形的内切圆半径的长为1,则其外接圆半径的长为( )
| A. | $\sqrt{3}+1$ | B. | $\sqrt{2}+1$ | C. | $\sqrt{2}$ | D. | $\sqrt{2}-1$ |