题目内容
12.(1)△ABD≌△ACE;
(2)OB=OC.
分析 (1)由已知条件得到∠BAD=∠CAE,根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到∠ABD=∠ACE,由等腰三角形的性质得到∠ABC=∠ACB由角的和差即可得到∠OBC=∠OCB,然后根据等腰三角形的判定即可得到结论.
解答 证明:(1)∵∠BAE=∠CAD,
∴∠BAD=∠CAE,
在△ABD与△ACE中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS);
(2)∵△ABD≌△ACE,
∴∠ABD=∠ACE,
∵AB=AC,
∴∠ABC=∠ACB
∴∠ABC-∠ABD=∠ACB-∠ACE,
即∠OBC=∠OCB,
∴OB=OC.
点评 此题考查了全等三角形的判定与性质,等腰三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.
练习册系列答案
相关题目
2.某服装店用7000元购进A、B两种新式服装,按标价售出后获得毛利润4000元(毛利润=售价-进价),这两种服装的进价,标价如表所示:
求这两种服装各购进的件数?
| 类型 价格 | A型 | B型 |
| 进价(元/件) | 60 | 100 |
| 标价(元/件) | 100 | 150 |