题目内容

12.如图,在△ABC中,AB=AC,取点D与点E,使得AD=AE,∠BAE=∠CAD,连结BD与CE交于点O.求证:
(1)△ABD≌△ACE;
(2)OB=OC.

分析 (1)由已知条件得到∠BAD=∠CAE,根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到∠ABD=∠ACE,由等腰三角形的性质得到∠ABC=∠ACB由角的和差即可得到∠OBC=∠OCB,然后根据等腰三角形的判定即可得到结论.

解答 证明:(1)∵∠BAE=∠CAD,
∴∠BAD=∠CAE,
在△ABD与△ACE中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS);

(2)∵△ABD≌△ACE,
∴∠ABD=∠ACE,
∵AB=AC,
∴∠ABC=∠ACB
∴∠ABC-∠ABD=∠ACB-∠ACE,
即∠OBC=∠OCB,
∴OB=OC.

点评 此题考查了全等三角形的判定与性质,等腰三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网