ÌâÄ¿ÄÚÈÝ
1£®£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôµãMΪµÚÈýÏóÏÞÄÚÅ×ÎïÏßÉÏÒ»¶¯µã£¬µãMµÄºá×ø±êΪm£¬¡÷AMBµÄÃæ»ýΪS£®ÇóS¹ØÓÚmµÄº¯Êý¹ØÏµÊ½£¬²¢Çó³öSµÄ×î´óÖµ£»
£¨3£©ÈôµãPÊÇÅ×ÎïÏßÉϵ͝µã£¬µãQÊÇÖ±Ïßy=-xÉϵ͝µã£¬µãBÊÇÅ×ÎïÏßÓëyÖá½»µã£®ÅжÏÓм¸¸öλÖÃÄܹ»Ê¹ÒÔµãP¡¢Q¡¢B¡¢OΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬Ö±½Óд³öÏàÓ¦µÄµãQµÄ×ø±ê£®
·ÖÎö £¨1£©ÉèÅ×ÎïÏß½âÎöʽΪy=ax2+bx+c£¬È»ºó°ÑµãA¡¢B¡¢CµÄ×ø±ê´úÈ뺯Êý½âÎöʽ£¬ÀûÓôý¶¨ÏµÊý·¨Çó½â¼´¿É£»
£¨2£©¸ù¾ÝͼÐεĸ·¨£¬¿ÉµÃ¶þ´Îº¯Êý£¬¸ù¾ÝÅ×ÎïÏßµÄÐÔÖÊÇó³öµÚÈýÏóÏÞÄÚ¶þ´Îº¯ÊýµÄ×îÖµ£¬È»ºó¼´¿ÉµÃ½â£»
£¨3£©ÀûÓÃÖ±ÏßÓëÅ×ÎïÏߵĽâÎöʽ±íʾ³öµãP¡¢QµÄ×ø±ê£¬È»ºóÇó³öPQµÄ³¤¶È£¬ÔÙ¸ù¾ÝƽÐÐËıßÐεĶԱßÏàµÈÁгöËãʽ£¬È»ºó½â¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì¼´¿ÉµÃ½â£®
½â´ð ½â£º£¨1£©½«A£¨-4£¬0£©£¬C£¨2£¬0£©Á½µã´úÈ뺯Êý½âÎöʽ£¬µÃ
$\left\{\begin{array}{l}{16a-4b-4=0}\\{4a+2b-4=0}\end{array}\right.$
½âµÃ$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=1}\end{array}\right.$
ËùÒԴ˺¯Êý½âÎöʽΪ£ºy=$\frac{1}{2}$x2+x-4£»
£¨2£©¡ßMµãµÄºá×ø±êΪm£¬ÇÒµãMÔÚÕâÌõÅ×ÎïÏßÉÏ£¬
¡àMµãµÄ×ø±êΪ£º£¨m£¬$\frac{1}{2}$m2+m-4£©£¬
¡àS=S¡÷AOM+S¡÷OBM-S¡÷AOB
=$\frac{1}{2}$¡Á4¡Á£¨$\frac{1}{2}$m2+m-4£©+$\frac{1}{2}$¡Á4¡Á£¨-m£©-$\frac{1}{2}$¡Á4¡Á4
=-m2-2m+8-2m-8
=-m2-4m
=-£¨m+2£©2+4£¬
¡ß-4£¼m£¼0£¬
µ±m=-2ʱ£¬SÓÐ×î´óֵΪ£ºS=-4+8=4£®
´ð£ºm=-2ʱSÓÐ×î´óÖµS=4£®
£¨3£©¡ßµãQÊÇÖ±Ïßy=-xÉϵ͝µã£¬
¡àÉèµãQµÄ×ø±êΪ£¨a£¬-a£©£¬
¡ßµãPÔÚÅ×ÎïÏßÉÏ£¬ÇÒPQ¡ÎyÖᣬ
¡àµãPµÄ×ø±êΪ£¨a£¬$\frac{1}{2}$a2+a-4£©£¬
¡àPQ=-a-£¨$\frac{1}{2}$a2+a-4£©=-$\frac{1}{2}$a2-2a+4£¬
ÓÖ¡ßOB=0-£¨-4£©=4£¬
ÒÔµãP£¬Q£¬B£¬OΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬
¡à|PQ|=OB£¬
¼´|-$\frac{1}{2}$a2-2a+4|=4£¬
¢Ù-$\frac{1}{2}$a2-2a+4=4ʱ£¬ÕûÀíµÃ£¬a2+4a=0£¬
½âµÃa=0£¨ÉáÈ¥£©»òa=-4£¬
-a=4£¬
ËùÒÔµãQ×ø±êΪ£¨-4£¬4£©£¬
¢Ú-$\frac{1}{2}$a2-2a+4=-4ʱ£¬ÕûÀíµÃ£¬a2+4a-16=0£¬
½âµÃa=-2¡À2$\sqrt{5}$£¬
ËùÒÔµãQµÄ×ø±êΪ£¨-2+2$\sqrt{5}$£¬2-2$\sqrt{5}$£©»ò£¨-2-2$\sqrt{5}$£¬2+2$\sqrt{5}$£©£®
×ÛÉÏËùÊö£¬Q×ø±êΪ£¨-4£¬4£©»ò£¨-2+2$\sqrt{5}$£¬2-2$\sqrt{5}$£©»ò£¨-2-2$\sqrt{5}$£¬2+2$\sqrt{5}$£©Ê±£¬Ê¹µãP£¬Q£¬B£¬OΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬Óдý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ£»ÀûÓÃͼÐθ·¨µÃ³ö¶þ´Îº¯ÊýµÄ×îÖµÎÊÌâÊǽâÌâ¹Ø¼ü£»Æ½ÐÐËıßÐεĶԱßÏàµÈµÄÐÔÖÊ£¬Æ½ÃæÖ±½Ç×ø±êϵÖÐÁ½µã¼äµÄ¾àÀëµÄ±íʾ£¬×ÛºÏÐÔ½ÏÇ¿£¬µ«ÄѶȲ»´ó£¬×Ðϸ·ÖÎö±ã²»ÄÑÇó½â£®
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
| A£® | x=-2 | B£® | x=-1 | C£® | x=1 | D£® | x=2 |
| A£® | ÔÚÍ¬Ò»Æ½ÃæÄÚ£¬¹ýÖ±ÏßÍâÒ»µãÓÐÇÒÖ»ÓÐÒ»ÌõÖ±ÏßÓëÒÑÖªÖ±Ï߯½ÐУ® | |
| B£® | Á½Ö±Ïß±»µÚÈýÖ±ÏßËù½Ø£¬Èç¹ûͬλ½ÇÏàµÈ£¬ÄÇôÁ½Ö±Ï߯½ÐÐ | |
| C£® | Á½µãÈ·¶¨Ò»ÌõÖ±Ïß | |
| D£® | ÄÚ´í½ÇÏàµÈ |
| ƹÅÒÇòÅĵÄÊýÁ¿£¨¸±£© | ÓðëÇòÅĵÄÊýÁ¿£¨¸±£© | ×Ü·ÑÓã¨Ôª£© | |
| µÚÒ»´Î¹ºÂò | 6 | 5 | 1140 |
| µÚ¶þ´Î¹ºÂò | 3 | 7 | 1110 |
| µÚÈý´Î¹ºÂò | 9 | 8 | 1062 |
£¨2£©ÇóƹÅÒÇòÅÄ¡¢ÓðëÇòÅĵıê¼Û£»
£¨3£©ÈôƹÅÒÇòÅÄ¡¢ÓðëÇòÅĵÄÕÛ¿ÛÏàͬ£¬ÎʼÒÀÖ¸£³¬ÊÐÊÇ´ò¼¸ÕÛ³öÊ۵ģ¿