题目内容
求证:AE=BF.
考点:全等三角形的判定与性质,正方形的性质
专题:证明题
分析:根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AGB的度数,根据直角三角形锐角的关系,可得∠ABG与∠BAG的关系,根据同角的余角相等,可得∠BAG与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案.
解答:证明:∵正方形ABCD,
∴∠ABC=∠C,AB=BC.
∵AE⊥BF,
∴∠AGB=∠BAG+∠ABG=90°,
∵∠ABG+∠CBF=90°,
∴∠BAG=∠CBF.
在△ABE和△BCF中,
,
∴△ABE≌△BCF(ASA),
∴AE=BF.
∴∠ABC=∠C,AB=BC.
∵AE⊥BF,
∴∠AGB=∠BAG+∠ABG=90°,
∵∠ABG+∠CBF=90°,
∴∠BAG=∠CBF.
在△ABE和△BCF中,
|
∴△ABE≌△BCF(ASA),
∴AE=BF.
点评:本题考查了全等三角形的判定与性质,利用了正方形的性质,直角三角形的性质,余角的性质,全等三角形的判定与性质.
练习册系列答案
相关题目
如果关于x的不等式(a+2)x>a+2的解集为x<1,那么a的取值范围是( )
| A、a>0 | B、a<0 |
| C、a>-2 | D、a<-2 |